2024论文精读:利用大语言模型(GPT)增强上下文学习去做关系抽取任务

文章目录

    • 1. 前置知识
    • 2. 文章通过什么来引出他要解决的问题
    • 3. 作者通过什么提出RE任务存在上面所提出的那几个问题
        • 3.1 问题一:ICL检索到的**示范**中实体个关系的相关性很低。
        • 3.2 问题二:示范中缺乏解释输入-标签映射导致ICL效果不佳。
    • 4. 作者为了解决上述的问题,所提出来的方法
        • 4.1 证明作者提出的第三个问题是一个问题
    • 5. 实现方式
        • 5.1 任务定义
        • 5.2 概述
        • 5.3 提示构建
        • 5.4 任务感知的示范检索
          • 5.4.1 实体提示的句子嵌入
          • 5.4.2 微调关系表示
        • 5.5 金标签诱导推理
    • 6. 实验结果
    • 7. 复现情况

GPT-RE: In-context Learning for Relation Extraction using Large Language Models

论文信息

年份: 2023

状态:arXiv

引用次数:77(截至至2024年7月20日)

是否开源:是


1. 前置知识

  • ICL (In-Context Learning) 上下文学习

2. 文章通过什么来引出他要解决的问题

文章说,现在通过上下文学习 (ICL) 的大语言模型有很大的潜力,但是在关系抽取的任务上 (RE) 依旧是落后全监督的方法,所以作者提出了两个可能的问题,就是因为这两个问题导致现在的大预言模型关系抽取的精度比那些全监督的关系抽取模型还要差。这两个问题是:

  • **问题一:**现有的在句子级别的示范检索方法中,与实体和关系的相关性低。
  • **问题二:**缺乏对示范中输入-标签映射的解释,导致ICL的效果不佳。
  • **问题三:**大模型会错误将NULL示例分类为其他预定义标签的强烈倾向。

3. 作者通过什么提出RE任务存在上面所提出的那几个问题

3.1 问题一:ICL检索到的示范中实体个关系的相关性很低。

什么是示范?

示范指的是在使用大型语言模型进行上下文学习(ICL)时,作为学习样本的示例。可以理解为提示词,这种数据通常来源于训练数据。

在别人使用大模型进行关系抽取任务的时候,示范(我个人认为是提示词)都是通过句子嵌入随机选者,或者通过KNN搜索选择。

ok?那么为什么使用上面的方法导致使用大模型进行关系抽取效果会不好呢?

作者说,基于句子嵌入的KNN检索更关注整体句子语义的相关性,而不太关注其中包含的具体实体和关系,这就导致了示范的质量较低。在这里作者举了一个例子:

image-20240719205614114

这个图片呢,就是说明了我们有一个测试输入的句子Test Input,想要使用大模型来进行关系抽取,但是,他想要使用KNN的方法从训练集中找到一些一样关系的句子,来作为提示词中的示范。但是能,由于使用句子嵌入的原因 ,导致了拿到的示范并不准确,我们输入的句子是想要找到公司和一个城市founded by的关系,但是示例呢找到的是located in的关系,这并不符合,这也导致了大模型的抽取精度不高的原因。

3.2 问题二:示范中缺乏解释输入-标签映射导致ICL效果不佳。

普通形式的ICL将所有示范列为输入-标签对,而没有任何解释。这可能会误导大型语言模型(LLMs)从表面词汇中学习浅层线索,而关系可以因语言的复杂性以多种形式呈现。特别是当ICL有最大输入长度限制时,优化每个单独示范的学习效率变得极为重要。

4. 作者为了解决上述的问题,所提出来的方法

  • 解决办法一:在示范检索中引入任务感知的表示。

incorporating task-aware representations in demonstration retrieval.

核心是使用刻意编码并强调实体和关系信息的表示,而不是用于KNN检索的句子嵌入。

作者使用两种不同的检索方法实现了这一点,(1)实体题是的句子嵌入(2)经过微调的关系表示,这自然的强调了实体和关系。这两种方法都包含了比句子语义更多的RE任务所需要的特定信息,从而有效地解决了低相关性的问题。

  • 解决办法二:通过金标签引导的推理逻辑丰富示范内容。

enriching the demonstrations with gold label-induced reasoning logic.

作者提议将推理逻辑注入示范中,去提供更多的证据来对齐输入和标签,这一策略类似于思维链(Chain-of-Thought)

但是作者这次使用的方式与传统的思维链不一样,他不仅解释为什么给定句子应该被归类于这样特定的标签,而且还要解释为什么NULL示例不应干被分配到任何预定义类别中。

4.1 证明作者提出的第三个问题是一个问题

作者提出了大语言模型会有过度预测的问题。

image-20240719214320366

观察到大型语言模型(LLMs)有将NULL示例错误分类到其他预定义标签的强烈倾向。作者在三个流行的通用领域关系抽取(RE)数据集上评估了我们提出的方法:Semeval 2010任务8、TACRED和ACE05,以及一个科学领域数据集SciERC。我们观察到GPT-RE不仅在现有的GPT-3基准上取得了改进,而且也超过了全监督基准。具体来说,GPT-RE在Semeval和SciERC数据集上取得了最佳性能,在TACRED和ACE05数据集上也表现竞争力。

5. 实现方式

5.1 任务定义

C C C 表述输入的上下文, e s u b e_{sub} esub表示主体, e o b j e_{obj} eobj表示客体,以下的公式表示主体和客体之间的实体对。我们在关系抽取任务之前,会给定一组预定一个关系类别 R R R,关系抽取的目的就是预测上下文 C C C中实体对( e s u b e_{sub} esub, e o b j e_{obj} eobj)之间关系 y y y,并且 y ∈ R y \in R yR的,当然还有一种情况就是他们之间并没有关系,那么预测的结果就为 y = n u l l y=null y=null
e s u b ∈ C e o b j ∈ C e_{sub} \in C \\ e_{obj} \in C esubCeobjC

5.2 概述

根据上面所提到的两个内容,作者引入了两个模块

  • 模块一:任务感知的示范检索,目的是为了检索到更高精度的示范。
  • 模块二:金标签的诱导推理,用来丰富每个示范中的解释。

image-20240719230401888

图四为整个系统的架构图。

5.3 提示构建

我们为每个测试用例都设定一个提示语,这个提示语会输入到GPT-3模型中去。每个提示会包含以下这几个部分:

**指令 I I I:**我们提供关系抽取任务描述和预定义的的类别集 R R R的简要概述,模型的明确要求输出属于预定义类别的关系。否者,模型将要输出NULL。

在框架图中为这个部分:

image-20240719231430662

**ICL 范式 D D D利用任务感知检索器(在5.4节中会提到)**获取 K K K次是示范集,然后用金标签诱导的推理ri丰富每个示范(xi, yi),构建新的示范集(xi, yi, ri)作为D。 测试输入 xtest:类似于示范,我们提供测试输入xtest,期望GPT-3生成相应的关系ytest。

在整个流程图中的这个环节:

image-20240719235132587

说实话,这里上面讲的并不是人话,按照作者前面的意思,就是会利用训练集,然后再结合大模型,让大模型去说出为什么这个句子中的这两个实体存在这样的关系,所以往下继续看。

5.4 任务感知的示范检索

作者在上面说了KNN的效果不好,所以他提出了两种新的方法来提供更稳健的表示,用来获取更好的检索质量

  • 方法一:一个初级的实体提示的句子嵌入

压根不是什么实体提示,就是重构句子,在句子之前加一句话,说两个实体之间的关系是什么。

  • 方法二:一个高级的微调关系表示

这个部分在整个流程图中的这个位置:

image-20240719235202872

5.4.1 实体提示的句子嵌入

我们会对输入的句子进行改造

Input Text

他有一个姐没Lisa

改造后的句子

Reconstructed context:

在上下文中‘他’与‘Lisa’之间的关系:他有一个姐妹Lisa

然后,作者利用SimCSE去在训练集中找到测试句子嵌入相似度高的句子。

5.4.2 微调关系表示

个人理解:就是模仿了Bert

目前基于BERT的微调方法用于RE,试图通过添加额外的标记符号来突出主体和客体实体及其类型,从而捕捉上下文信息和实体信息。具体来说,给定一个示例:“他有一个姐妹Lisa。”,输入的标记是:

[ C L S ] [CLS] [CLS] [ S U B _ P E R ] [SUB\_PER] [SUB_PER] [ / S U B _ P E R ] [/SUB\_PER] [/SUB_PER]有一个姐妹$[OBJ_PER] L i s a Lisa Lisa[/OBJ_PER]$。[SEP]”

其中**“PER”**是提供的实体类型。假设BERT编码器的第n个隐藏表示为 h n h_n hn。假设 i i i j j j是两个实体标记 [ S U B _ P E R ] [SUB\_PER] [SUB_PER] [ O B J _ P E R ] [OBJ\_PER] [OBJ_PER]的索引,我们将关系表示定义为 R e l = h i ⊕ h j Rel = h_i ⊕ h_j Rel=hihj,其中⊕表示在第一维上的表示连接。随后,这个表示被输入到一个前馈网络中,用于预测关系概率 p ( y ∈ R ∪ N U L L ∣ R e l ) p(y ∈ R ∪ {NULL} | Rel) p(yRNULLRel)

实体标记明确编码了主体和客体实体,关系表示Rel自然地丰富了实体信息。我们认为这种方法可能弥补GPT-3在RE中的限制。虽然GPT-3 ICL的示范是有限的,但微调过程是不受限制的,可以在整个训练数据上进行。这具有两个后续优点。首先,关系表示直接微调以适应RE任务,这可能显著提高整体检索质量。其次,过度预测NULL的问题将得到大幅缓解,因为微调后的模型可以准确识别类似的NULL示例。

5.5 金标签诱导推理

就是把上一步找到的在训练集中的句子,输入给大模型中,让大模型去回答,为什么这个句子中的这两个实体是这样的一个关系。

提示词为:

What are the clues that lead to the relation between [entity1] and [entity2] to be [relation] in the sentence [context]?

生成出的内容就会拼接到[ICL范式](# 5.3 提示构建)中去

以下为论文中提出的一个例子:

image-20240720003124837

6. 实验结果

肯定是很好才能发啦

7. 复现情况

即将开始

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/49150.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Git】(基础篇七)—— IntelliJIDEA集成Git

InteliJ IDEA集成Git 现在有很多的集成工具帮助我们写代码,使用这些工具可以帮助我们加速写代码,很多工具也可以集成git,使用图形工具管理git,相信了解了底层运行逻辑的你能够很快地上手使用这些工具,本文以InteliJ I…

7 Vue3

相比 Vue2 1. 优点 vue3支持vue2的大多数特性,实现对vue2的兼容vue3对比vue2具有明显的性能提升 打包大小减少41%初次渲染快55%,更新快133%内存使用减少54% 更好的支持TypeScript使用Proxy代替defineProperty实现响应式数据 2. 性能提升的原因 静态标…

jmeter-beanshell学习11-从文件获取指定数据

参数文件里的参数可能过段时间就不能用了,需要用新的参数。如果有多个交易,读不同的参数文件,但是数据还是一套,就要改多个参数文件。或者只想执行参数文件的某一行数据,又不想调整参数文件顺序。 第一个问题目前想到…

Ant Design Vue中日期选择器快捷选择 presets 用法

ant写文档的纯懒狗 返回的是一个day.js对象 范围选择时可接受一个数组 具体参考 操作 Day.js 话不多说 直接上代码 <a-range-pickerv-model:value"formData.datePick"valueFormat"YYYY-MM-DD HH:mm:ss"showTime:presets"presets"change&quo…

(前缀和) LeetCode 238. 除自身以外数组的乘积

一. 题目描述 原题链接 给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&…

WebRTC通话原理(SDP、STUN、 TURN、 信令服务器)

文章目录 1.媒体协商SDP简介 2.网络协商STUN的工作原理TURN工作原理 3.信令服务器信令服务器的主要功能信令服务器的实现方式 1.媒体协商 比如下面这个例子 A端与B端要想通信 A端视频采用VP8做解码&#xff0c;然后发送给B端&#xff0c;B端怎么解码&#xff1f; B端视频采用…

【论文共读】【翻译】ShuffleNet v1:一种用于移动设备的极其高效的卷积神经网络

[原文地址] https://arxiv.org/pdf/1707.01083 [翻译] 0. 摘要 我们介绍了一种计算效率极高的CNN架构&#xff0c;称为ShuffleNet&#xff0c;该架构专为计算能力非常有限的移动设备&#xff08;例如&#xff0c;10-150 MFLOPs&#xff09;而设计。新架构利用了两个新操作&am…

Ubuntu 22.04.4 LTS (linux) Tomcat 下载 安装配置详细教程

1 官网下载 下载链接 2 ubuntu 服务器安装 #下载 wget https://dlcdn.apache.org/tomcat/tomcat-9/v9.0.91/bin/apache-tomcat-9.0.91.tar.gz #解压 tar zxvf apache-tomcat-9.0.91.tar.gz sudo mv apache-tomcat-9.0.91/ /data/tomcat #配置环境变量 sudo vi /etc/profil…

WebGoC题解(13) 狐猬编程:GoC L4 结业测试 第4题 找木柴

题目描述 小明今天找了n跟木柴&#xff0c;但是木柴太多了&#xff0c;小明只能拿走m根木柴&#xff0c;小明希望拿走的木柴都是剩下的木柴中最长的&#xff0c;小明还画出以下图形 例如 输入 5 3 10 20 30 40 50 小明要拿走30 40 50 这3根木柴 从大到小画出以下图形 矩形的宽…

linux cpu 占用超100% 分析。

感谢: https://www.cnblogs.com/wolfstark/p/16450131.html 总结&#xff1a; 查看进程中各个线程占用百分比 top -H -p <pid> 某线程100%了 说明 任务处理不过来 会卡 但是永远不可能超100% 系统监视器里面看到的是 所有线程占用的 总和会超100%。 所以最好的情况是&…

MATLAB基础:字符串、元胞数组

今天我们继续学习MATLAB中的字符串、元胞和结构 字符串 由于MATLAB是面向矩阵的&#xff0c;所以字符串的处理可以用矩阵的形式实现 字符串的赋值与引用 假设变量a&#xff0c;将用单引号引起来的字符串赋值给它&#xff0c; a清心明目, b(a[4;-1;1]) 在这里&#xff0c;…

如何检查我的网站是否支持HTTPS

HTTPS是一种用于安全通信的协议&#xff0c;是HTTP的安全版本。HTTPS的主要作用在于为互联网上的数据传输提供安全性和隐私保护。通常是需要在网站安装部署SSL证书来实现网络数据加密传输&#xff0c;安全加密功能。 那么如果要检查你的网站是否支持HTTPS&#xff0c;可以看下…

云计算实训11——web服务器的搭建、nfs服务器的搭建、备份静态文件、基于linux和windows实现文件共享

一、搭建web服务器 1.关闭firewall和selinux 关闭防火墙 systemctl stop firewalld systemctl disable firewalld 停用selinux setenforce 0 配置文件中让sellinux不再启动 vim /etc/selinux/config SELINUXpermissive 2.编辑dns配置文件 vim /etc/resolv.conf nameserver 114.…

Go基础编程 - 11 - 函数(func)

接口&#xff08;interface&#xff09; 函数1. 函数定义1.1. 函数名1.2. 参数列表1.3. 返回值列表 2. 匿名函数3. 闭包、递归3.1 闭包3.1.1 函数、引用环境3.1.2 闭包的延迟绑定3.1.3 goroutine 的延迟绑定 3.2 递归函数 4. 延迟调用&#xff08;defer&#xff09;4.1 defer特…

2024-07-22 Unity AI行为树1 —— 框架介绍

文章目录 1 行为树2 行为树驱动方式3 行为树结点分类3.1 控制节点3.2 执行节点 4 行为树与状态机比较 本文章参考 B 站唐老狮 2023年直播内容。 点击前往唐老狮 B 站主页。 1 行为树 ​ 行为树&#xff08;Behavior Tree&#xff0c;BT&#xff09;在游戏 AI 中是一种用于控制…

微软蓝屏事件:网络安全与系统稳定性的反思与前瞻

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

javascript 的执行上下文与作用域

目录 1. 初步了解 上下文&#xff08;context&#xff09;2. 全局上下文(global context)3. 上下文栈 (context stack)4. 作用域链( scope chain)5. 作用域(scope)6. 作用域链增强7. 变量声明7.1 var 声明变量7.2 let 声明变量7.3 const 常量声明 1. 初步了解 上下文&#xff0…

轨迹优化 | 基于ESDF的共轭梯度优化算法(附ROS C++/Python仿真)

目录 0 专栏介绍1 数值优化&#xff1a;共轭梯度法2 基于共轭梯度法的轨迹优化2.1 障碍约束函数2.2 曲率约束函数2.3 平滑约束函数 3 算法仿真3.1 ROS C实现3.2 Python实现 0 专栏介绍 &#x1f525;课程设计、毕业设计、创新竞赛、学术研究必备&#xff01;本专栏涉及更高阶的…

CAS乐观锁原理

1、什么是CAS&#xff1f; compare and swap也就是比较和交换&#xff0c;他是一条CPU的并发原语。 他在替换内存的某个位置的值时&#xff0c;首先查看内存中的值与预期值是否一致&#xff0c;如果一致&#xff0c;执行替换操作。 这个操作是一个原子性操作。 Java中基于Un…

手机免费恢复照片的软件有哪些?这2个工具来帮忙

照片是我们情感的载体&#xff0c;是记忆的碎片。它们无声地诉说着过去的故事&#xff0c;记录着生活中的点点滴滴。但意外常常是突如其来的&#xff0c;当发现手机照片丢失时&#xff0c;我们往往心痛不已。 不用担心&#xff0c;这场看似绝望的危机&#xff0c;实则有解决之…