轨迹优化 | 基于ESDF的共轭梯度优化算法(附ROS C++/Python仿真)

目录

  • 0 专栏介绍
  • 1 数值优化:共轭梯度法
  • 2 基于共轭梯度法的轨迹优化
    • 2.1 障碍约束函数
    • 2.2 曲率约束函数
    • 2.3 平滑约束函数
  • 3 算法仿真
    • 3.1 ROS C++实现
    • 3.2 Python实现

0 专栏介绍

🔥课程设计、毕业设计、创新竞赛、学术研究必备!本专栏涉及更高阶的运动规划算法实战:曲线生成与轨迹优化、碰撞模型与检测、多智能体群控、深度强化学习运动规划、社会性导航、全覆盖路径规划等内容,每个模型都包含代码实现加深理解。

🚀详情:运动规划实战进阶


1 数值优化:共轭梯度法

共轭梯度法是一种用于解决大型稀疏线性方程组或无约束优化问题的迭代数值方法。它利用了线性代数中的共轭概念,并结合了梯度下降法的思想,以更有效地找到函数的极小值点。

在这里插入图片描述

形式化地,对于 n n n维二次优化问题

x ∗ = a r g min ⁡ x 1 2 x T Q x + q T x \boldsymbol{x}^*=\mathrm{arg}\min _{\boldsymbol{x}}\frac{1}{2}\boldsymbol{x}^T\boldsymbol{Qx}+\boldsymbol{q}^T\boldsymbol{x} x=argxmin21xTQx+qTx

其中 Q \boldsymbol{Q} Q n n n维对称正定阵, q ∈ R n \boldsymbol{q}\in \mathbb{R} ^n qRn,共轭梯度法既克服了梯度下降法收敛慢的缺点,又避免存储和计算牛顿类算法所需的二阶梯度信息,其核心原理是:求解矩阵 Q \boldsymbol{Q} Q的共轭向量组 d 0 , d 1 , ⋯ , d n \boldsymbol{d}_0,\boldsymbol{d}_1,\cdots ,\boldsymbol{d}_n d0,d1,,dn作为 n n n个优化方向,由于优化方向间彼此正交,故每次迭代只需沿着一个方向 d i \boldsymbol{d}_i di寻优而互不影响。所以理论上最多 n n n次迭代就能找到最优解,收敛速度快,但实际应用中需要视具体情况确定阈值。

2 基于共轭梯度法的轨迹优化

对路径序列 X = { x i = ( x i , y i ) ∣ i ∈ [ 1 , N ] } \mathcal{X} =\left\{ \boldsymbol{x}_i=\left( x_i,y_i \right) |i\in \left[ 1,N \right] \right\} X={xi=(xi,yi)i[1,N]}设计优化目标函数

f ( X ) = w o P o b s ( X ) + w κ P c u r ( X ) + w s P s m o ( X ) f\left( \mathcal{X} \right) =w_oP_{\mathrm{obs}}\left( \mathcal{X} \right) +w_{\kappa}P_{\mathrm{cur}}\left( \mathcal{X} \right) +w_sP_{\mathrm{smo}}\left( \mathcal{X} \right) f(X)=woPobs(X)+wκPcur(X)+wsPsmo(X)

2.1 障碍约束函数

P o b s ( X ) = ∑ x i ∈ X σ o ( ∥ x i − o min ⁡ ∥ 2 − d max ⁡ ) P_{\mathrm{obs}}\left( \mathcal{X} \right) =\sum_{\boldsymbol{x}_i\in \mathcal{X}}^{}{\sigma _o\left( \left\| \boldsymbol{x}_i-\boldsymbol{o}_{\min} \right\| _2-d_{\max} \right)} Pobs(X)=xiXσo(xiomin2dmax)

惩罚机器人与障碍发生碰撞,其中 σ o ( ⋅ ) \sigma _o\left( \cdot \right) σo()是惩罚函数(可选为二次型); o min ⁡ \boldsymbol{o}_{\min} omin是距离 x i \boldsymbol{x}_i xi最近的障碍物; d max ⁡ d_{\max} dmax是距离阈值,节点与最近障碍物的距离超过阈值则不会受到惩罚。以二次型为例,其梯度为

∂ P o b s ( x i ) ∂ x i = 2 ( ∥ x i − o min ⁡ ∥ 2 − d max ⁡ ) ∂ ∥ x i − o min ⁡ ∥ 2 ∂ x i = 2 ( ∥ x i − o min ⁡ ∥ 2 − d max ⁡ ) x i − o min ⁡ ∥ x i − o min ⁡ ∥ 2 \frac{\partial P_{\mathrm{obs}}\left( \boldsymbol{x}_i \right)}{\partial \boldsymbol{x}_i}=2\left( \left\| \boldsymbol{x}_i-\boldsymbol{o}_{\min} \right\| _2-d_{\max} \right) \frac{\partial \left\| \boldsymbol{x}_i-\boldsymbol{o}_{\min} \right\| _2}{\partial \boldsymbol{x}_i}\\=2\left( \left\| \boldsymbol{x}_i-\boldsymbol{o}_{\min} \right\| _2-d_{\max} \right) \frac{\boldsymbol{x}_i-\boldsymbol{o}_{\min}}{\left\| \boldsymbol{x}_i-\boldsymbol{o}_{\min} \right\| _2} xiPobs(xi)=2(xiomin2dmax)xixiomin2=2(xiomin2dmax)xiomin2xiomin

这里最小障碍通过ESDF获取,可以参考相关文章:

  • ROS2从入门到精通5-1:详解代价地图与costmap插件编写(以距离场ESDF为例)
  • 轨迹优化 | 图解欧氏距离场与梯度场算法(附ROS C++/Python实现)

在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-toB9MWvL-1721696975312)(https://i-blog.csdnimg.cn/direct/2da70f16131b48e2a2dfb8e1cbf7a89b.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBATXIuV2ludGVyYA==,size_50,color_FFFFFF,t_30,g_se,x_16#pic_center =650x)]

2.2 曲率约束函数

P c u r ( X ) = ∑ x i ∈ X σ κ ( Δ ϕ i ∥ Δ x i ∥ 2 − κ max ⁡ ) P_{\mathrm{cur}}\left( \mathcal{X} \right) =\sum_{\boldsymbol{x}_i\in \mathcal{X}}^{}{\sigma _{\kappa}\left( \frac{\varDelta \phi _i}{\left\| \varDelta \boldsymbol{x}_i \right\| _2}-\kappa _{\max} \right)} Pcur(X)=xiXσκ(Δxi2Δϕiκmax)

对每个节点轨迹的瞬时曲率进行了上界约束,其中 σ κ ( ⋅ ) \sigma _{\kappa}\left( \cdot \right) σκ()是惩罚函数(可选为二次型); 是路径最大允许曲率——由机器人转向半径约束决定

其梯度为

∂ P c u r ( x i ) ∂ x i = α 1 ∂ κ i ∂ x i − 1 + α 2 ∂ κ i ∂ x i + α 3 ∂ κ i ∂ x i + 1 \frac{\partial P_{\mathrm{cur}}\left( \boldsymbol{x}_i \right)}{\partial \boldsymbol{x}_i}=\alpha _1\frac{\partial \kappa _i}{\partial \boldsymbol{x}_{i-1}}+\alpha _2\frac{\partial \kappa _i}{\partial \boldsymbol{x}_i}+\alpha _3\frac{\partial \kappa _i}{\partial \boldsymbol{x}_{i+1}} xiPcur(xi)=α1xi1κi+α2xiκi+α3xi+1κi

为了求解该梯度,定义向量 a \boldsymbol{a} a在向量 b \boldsymbol{b} b的垂直分量为

a ⊥ b = a − a T b ∣ b ∣ ⋅ b ∣ b ∣ \boldsymbol{a}\bot \boldsymbol{b}=\boldsymbol{a}-\frac{\boldsymbol{a}^T\boldsymbol{b}}{\left| \boldsymbol{b} \right|}\cdot \frac{\boldsymbol{b}}{\left| \boldsymbol{b} \right|} ab=abaTbbb

则令

p 1 = Δ x i ⊥ ( − Δ x i + 1 ) ∥ Δ x i ∥ 2 ∥ Δ x i + 1 ∥ 2 , p 2 = ( − Δ x i + 1 ) ⊥ Δ x i ∥ Δ x i ∥ 2 ∥ Δ x i + 1 ∥ 2 \boldsymbol{p}_1=\frac{\varDelta \boldsymbol{x}_i\bot \left( -\varDelta \boldsymbol{x}_{i+1} \right)}{\left\| \varDelta \boldsymbol{x}_i \right\| _2\left\| \varDelta \boldsymbol{x}_{i+1} \right\| _2}, \boldsymbol{p}_2=\frac{\left( -\varDelta \boldsymbol{x}_{i+1} \right) \bot \varDelta \boldsymbol{x}_i}{\left\| \varDelta \boldsymbol{x}_i \right\| _2\left\| \varDelta \boldsymbol{x}_{i+1} \right\| _2} p1=Δxi2Δxi+12Δxi(Δxi+1),p2=Δxi2Δxi+12(Δxi+1)Δxi

从而

∂ κ i ∂ x i = 1 ∥ Δ x i ∥ 2 − 1 1 − cos ⁡ 2 Δ ϕ ( − p 1 − p 2 ) − Δ ϕ i Δ x i ∥ Δ x i ∥ 2 3 ∂ κ i ∂ x i − 1 = 1 ∥ Δ x i ∥ 2 − 1 1 − cos ⁡ 2 Δ ϕ p 2 + Δ ϕ i Δ x i ∥ Δ x i ∥ 2 3 ∂ κ i ∂ x i + 1 = 1 ∥ Δ x i ∥ 2 − 1 1 − cos ⁡ 2 Δ ϕ p 1 \begin{aligned} \frac{\partial \kappa _i}{\partial \boldsymbol{x}_i}&=\frac{1}{\left\| \varDelta \boldsymbol{x}_i \right\| _2}\frac{-1}{\sqrt{1-\cos ^2\varDelta \phi}}\left( -\boldsymbol{p}_1-\boldsymbol{p}_2 \right) -\frac{\varDelta \phi _i\varDelta \boldsymbol{x}_i}{\left\| \varDelta \boldsymbol{x}_i \right\| _{2}^{3}}\\\frac{\partial \kappa _i}{\partial \boldsymbol{x}_{i-1}}&=\frac{1}{\left\| \varDelta \boldsymbol{x}_i \right\| _2}\frac{-1}{\sqrt{1-\cos ^2\varDelta \phi}}\boldsymbol{p}_2+\frac{\varDelta \phi _i\varDelta \boldsymbol{x}_i}{\left\| \varDelta \boldsymbol{x}_i \right\| _{2}^{3}}\\\frac{\partial \kappa _i}{\partial \boldsymbol{x}_{i+1}}&=\frac{1}{\left\| \varDelta \boldsymbol{x}_i \right\| _2}\frac{-1}{\sqrt{1-\cos ^2\varDelta \phi}}\boldsymbol{p}_1\end{aligned} xiκixi1κixi+1κi=Δxi211cos2Δϕ 1(p1p2)Δxi23ΔϕiΔxi=Δxi211cos2Δϕ 1p2+Δxi23ΔϕiΔxi=Δxi211cos2Δϕ 1p1

2.3 平滑约束函数

P s m o ( X ) = ∑ x i ∈ X ∥ Δ x i − Δ x i + 1 ∥ 2 2 P_{\mathrm{smo}}\left( \mathcal{X} \right) =\sum_{\boldsymbol{x}_i\in \mathcal{X}}^{}{\left\| \varDelta \boldsymbol{x}_i-\varDelta \boldsymbol{x}_{i+1} \right\| _{2}^{2}} Psmo(X)=xiXΔxiΔxi+122

期望每段轨迹的长度近似相等,使整体运动更平坦,其梯度为

∂ P s m o ( x i ) ∂ x i = 2 ( x i − 2 − 4 x i − 1 + 6 x i − 4 x i + 1 + x i + 2 ) \frac{\partial P_{\mathrm{smo}}\left( \boldsymbol{x}_i \right)}{\partial \boldsymbol{x}_i}=2\left( \boldsymbol{x}_{i-2}-4\boldsymbol{x}_{i-1}+6\boldsymbol{x}_i-4\boldsymbol{x}_{i+1}+\boldsymbol{x}_{i+2} \right) xiPsmo(xi)=2(xi24xi1+6xi4xi+1+xi+2)

3 算法仿真

3.1 ROS C++实现

核心算法如下所示:

bool CGOptimizer::optimize(Points2d& path_o)
{// distance map updateboost::shared_ptr<costmap_2d::DistanceLayer> distance_layer;bool is_distance_layer_exist = false;for (auto layer = costmap_ros_->getLayeredCostmap()->getPlugins()->begin();layer != costmap_ros_->getLayeredCostmap()->getPlugins()->end(); ++layer){distance_layer = boost::dynamic_pointer_cast<costmap_2d::DistanceLayer>(*layer);if (distance_layer){is_distance_layer_exist = true;break;}}if (!is_distance_layer_exist)ROS_ERROR("Failed to get a Distance layer for potentional application.");int iter = 0;while (iter < max_iter_){// choose the first three nodes of the pathfor (int i = 2; i < path_o.size() - 2; ++i){Eigen::Vector2d xi_c2(path_o[i - 2].first, path_o[i - 2].second);Eigen::Vector2d xi_c1(path_o[i - 1].first, path_o[i - 1].second);Eigen::Vector2d xi(path_o[i].first, path_o[i].second);Eigen::Vector2d xi_p1(path_o[i + 1].first, path_o[i + 1].second);Eigen::Vector2d xi_p2(path_o[i + 2].first, path_o[i + 2].second);Eigen::Vector2d correction = Eigen::Vector2d::Zero();correction = correction + _calObstacleTerm(xi, distance_layer);if (!_insideMap((xi - correction)[0], (xi - correction)[1]))continue;correction = correction + _calSmoothTerm(xi_c2, xi_c1, xi, xi_p1, xi_p2);if (!_insideMap((xi - correction)[0], (xi - correction)[1]))continue;correction = correction + _calCurvatureTerm(xi_c1, xi, xi_p1);if (!_insideMap((xi - correction)[0], (xi - correction)[1]))continue;Eigen::Vector2d gradient = alpha_ * correction / (w_obstacle_ + w_smooth_ + w_curvature_);if (std::isnan(gradient[0]) || std::isnan(gradient[1]))gradient = Eigen::Vector2d::Zero();xi = xi - gradient;path_o[i] = std::make_pair(xi[0], xi[1]);}iter++;}return true;
}

在这里插入图片描述

在这里插入图片描述

3.2 Python实现

核心算法如下所示:

while i < self.max_iter:for j in range(2, pts_num - 2):xjm2 = np.array([[optimized_path[j - 2][0]], [optimized_path[j - 2][1]]])xjm1 = np.array([[optimized_path[j - 1][0]], [optimized_path[j - 1][1]]])xj   = np.array([[optimized_path[j][0]], [optimized_path[j][1]]])xjp1 = np.array([[optimized_path[j + 1][0]], [optimized_path[j + 1][1]]])xjp2 = np.array([[optimized_path[j + 2][0]], [optimized_path[j + 2][1]]])gradient = np.zeros((2, 1))# obstacle avoidancegradient = gradient + self.obstacleTerm(xj)if not self.isOnGrid(xj - gradient):continue# smoothgradient = gradient + self.smoothTerm(xjm2, xjm1, xj, xjp1, xjp2)if not self.isOnGrid(xj - gradient):continue# curvaturegradient = gradient + self.curvatureTerm(xjm1, xj, xjp1)if not self.isOnGrid(xj - gradient):continuexj = xj - self.alpha * gradient / self.w_totaloptimized_path[j, :] = xj[:, 0]i += 1self.trajectory = optimized_path

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/49120.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CAS乐观锁原理

1、什么是CAS&#xff1f; compare and swap也就是比较和交换&#xff0c;他是一条CPU的并发原语。 他在替换内存的某个位置的值时&#xff0c;首先查看内存中的值与预期值是否一致&#xff0c;如果一致&#xff0c;执行替换操作。 这个操作是一个原子性操作。 Java中基于Un…

手机免费恢复照片的软件有哪些?这2个工具来帮忙

照片是我们情感的载体&#xff0c;是记忆的碎片。它们无声地诉说着过去的故事&#xff0c;记录着生活中的点点滴滴。但意外常常是突如其来的&#xff0c;当发现手机照片丢失时&#xff0c;我们往往心痛不已。 不用担心&#xff0c;这场看似绝望的危机&#xff0c;实则有解决之…

Sql Server缓冲池、连接池等基本知识(附Demo)

目录 前言1. 缓存池2. 连接池3. 彩蛋 前言 基本的知识推荐阅读&#xff1a; java框架 零基础从入门到精通的学习路线 附开源项目面经等&#xff08;超全&#xff09;Mysql优化高级篇&#xff08;全&#xff09;Mysql底层原理详细剖析常见面试题&#xff08;全&#xff09; 1…

【VSCode】安装 【ESP-IDF】插件及【ESP32-S3】新建工程和工程配置

一、搭建基础工程 二、基础工程的文件架构解析 三、调试相关工具介绍 1、串口下载2、JTAG 下载与调试 四、工程的文件架构解析 五、基础工程配置 一、搭建基础工程 在 VS Code 中新建 ESP-IDF 基础工程的步骤如下&#xff1a; 1、启动 VS Code 并打开命令面板 按下“Ctrl…

逆向案例二十八——某高考志愿网异步请求头参数加密,以及webpack

网址&#xff1a;aHR0cDovL3d3dy54aW5nYW9rYW90Yi5jb20vY29sbGVnZXMvc2VhcmNo 抓包分析&#xff0c;发现请求头有参数u-sign是加密的&#xff0c;载荷没有进行加密&#xff0c;直接跟栈分析。 进入第二个栈&#xff0c;打上断点&#xff0c;分析有没有加密位置。 可以看到参数…

Chapter17 表面着色器——Shader入门精要学习

Chapter17 表面着色器 一、编译指令1.表面函数2.光照函数3.其他可选参数 二、两个结构体1.Input 结构体&#xff1a;数据来源2.SurfaceOutput 三、Unity背后做了什么四、表面着色器的缺点 一、编译指令 作用&#xff1a;指明该表面着色器的 表面函数 和 光照函数&#xff0c;并…

DPDK收包流程和Linux内核收包流程对比

DPDK 网卡收包流程-腾讯云开发者社区-腾讯云NIC 在接收到数据包之后&#xff0c;首先需要将数据同步到内核中&#xff0c;这中间的桥梁是 rx ring buffer。它是由 NIC 和驱动程序共享的一片区域&#xff0c;事实上&#xff0c;rx ring buffer 存储的并不是实际的 packet 数据&a…

【Gin】精准应用:Gin框架中工厂模式的现代软件开发策略与实施技巧(上)

【Gin】精准应用&#xff1a;Gin框架中工厂模式的现代软件开发策略与实施技巧(上) 大家好 我是寸铁&#x1f44a; 【Gin】精准应用&#xff1a;Gin框架中工厂模式的现代软件开发策略与实施技巧(上)✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 前言 本次文章分为上下两部分&…

【RaspberryPi】树莓派系统UI优化

接上文&#xff0c;如何去定制一个树莓派的桌面系统&#xff0c;还是以CM4为例。 解除CM4上电USB无法使用问题 将烧录好的tf卡通过读卡器插入到电脑上&#xff0c;进入boot磁盘&#xff0c;里面有一个Config文件&#xff0c;双击用记事本打开&#xff0c;在【pi4】一栏里加入一…

uboot 设置bootargs配置内核网络挂载根文件系统

uboot 设置bootargs配置内核网络挂载根文件系统 uboot设置bootargs env set bootargs "mem256M consolettyAMA0,115200 root/dev/nfs init/linuxrc nfsrootnfs主机地址:nfs路径/busybox/rootfs_glibc_arm64,prototcp rw nfsvers3 rootwait ip板子地址:nfs主机地址:网关:2…

C#与C++交互开发系列(六):同一个项目中使用C#和C++进行混合模式开发

欢迎来到C#与C交互开发系列的第六篇。在这篇博客中&#xff0c;我们将探讨混合编程&#xff0c;即在同一个项目中结合使用C#和C。在同一个项目中同时使用C/CLI和P/Invoke来实现C#与C的互操作。C/CLI提供了直接访问托管代码的能力&#xff0c;而P/Invoke则用于调用现有的C库函数…

网络安全防御--加密技术及身份、数据认证

VPN概述 VPN诞生的原因 1&#xff0c;物理专线成本高&#xff0c;在位置不固定的情况下&#xff0c;难以实现 2&#xff0c;直接将服务器开放到公网&#xff0c;不安全 VPN --- 虚拟专用网 --- 是指依靠ISP或者其他NSP或者企业自身&#xff0c;构建的专用的安全的数据通信网络&…

基于YOLO8的目标检测系统:开启智能视觉识别之旅

文章目录 在线体验快速开始一、项目介绍篇1.1 YOLO81.2 ultralytics1.3 模块介绍1.3.1 scan_task1.3.2 scan_taskflow.py1.3.3 target_dec_app.py 二、核心代码介绍篇2.1 target_dec_app.py2.2 scan_taskflow.py 三、结语 在线体验 基于YOLO8的目标检测系统 基于opencv的摄像头…

敏捷CSM认证:精通敏捷Scum估算方法,高效完成项目!

咱们做项目的时候可能都遇到过这种情况&#xff1a;项目一开始信心满满&#xff0c;觉得 deadline 稳了。结果呢&#xff1f;各种意外状况频出&#xff0c;时间好像怎么都不够用了&#xff0c;最后项目只能无奈延期&#xff0c;整个团队都像霜打的茄子。 说到底&#xff0c;还…

谷粒商城实战笔记-44-前端基础-Vue-整合ElementUI快速开发/设置模板代码

文章目录 一&#xff0c;安装导入ElementUI1&#xff0c;安装 element-ui2&#xff0c;导入 element-ui 二&#xff0c;ElementUI 实战1&#xff0c;将 App.vue 改为 element-ui 中的后台布局2&#xff0c;开发导航栏2.1 开发MyTable组件2.2 注册路由2.3 改造App.vue2.4 新增左…

Qt实现简易CAD软件的开发:技术解析与实现

文章目录 简易CAD软件的开发&#xff1a;技术解析与实现引言项目概述程序入口主窗口的实现主窗口类定义&#xff08;mainwindow.h&#xff09;主窗口类实现&#xff08;mainwindow.cpp&#xff09; 自定义绘图视图自定义绘图视图类定义&#xff08;myqgraphicsview.h&#xff0…

深入浅出C语言指针(进阶篇)

深入浅出C语言指针(基础篇) 深入浅出C语言指针(进阶篇) 目录 引言 一、指针和数组 1.数组名的理解 2.指针访问数组 3.一维数组传参的本质 二、二级指针 1.二级指针的概念 2.二级指针的内存表示 3.二级指针的解引用 三、字符指针 1.指针指向单个字符 2.指针指向字…

便携式自动气象站:科技赋能气象观测

便携式自动气象站&#xff0c;顾名思义&#xff0c;就是一款集成了多种气象传感器&#xff0c;能够自动进行气象观测和数据记录的设备。它体积小巧、重量轻&#xff0c;便于携带和快速部署&#xff0c;可以在各种环境下进行气象数据的实时监测。同时&#xff0c;通过内置的无线…

版本更新 | Orillusion 0.8发布,与大家同在!

过了这么久&#xff0c;我们Orillusion引擎的大版本更新终于来啦&#xff01; 这次的版本发布&#xff0c;大部分是更新了引擎底层能力&#xff0c;有兴趣的小伙伴可以直接查看&#xff1a; &#x1f517; https://github.com/Orillusion/orillusion 其实面对社区的小伙伴&…

应对爬虫过程中代理IP掉线的实用指南

当代理IP在爬虫中频繁掉线时&#xff0c;我们先要了解出现问题的可能原因&#xff0c;这不仅限于技术性因素&#xff0c;还涉及操作策略和环境因素。只有在找到具体原因后&#xff0c;才能针对问题类型从源头解决IP掉线问题。 一、问题原因&#xff1a; 1. 代理IP质量问题导致…