[C/C++入门][for]23、求阶乘

阶乘

一个正整数的阶乘是所有小于及等于该数的正整数的积,并且0的阶乘为1。

自然数n的阶乘写作n!。

即n!=1×2×3×...×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。

例如,5的阶乘(记作5!)等于5 * 4 * 3 * 2 * 1 = 120

在C++中,可以通过循环或递归来实现阶乘的计算。

循环方式实现阶乘

循环方式是最直观的方法,适合处理较小的数值:

#include<iostream> 
using namespace std;
int main()
{long long n, sum= 1;cin>>n;for(int i = 1; i <= n; ++i)sum *= i;cout<< sum;return 0;
}

当然,我们可以给方法做成一个函数:

#include <iostream>
using namespace std;unsigned long long factorial(unsigned int n) {unsigned long long result = 1;for (unsigned int i = 1; i <= n; ++i) {result *= i;}return result;
}int main() {unsigned int number;cout << "请输入一个非负整数:";cin >> number;cout << number << " 的阶乘是:" << factorial(number) << endl;return 0;
}

这里定义了一个名为factorial的函数,它接受一个无符号整型参数n,返回值类型是unsigned long long。这个函数的作用是计算n的阶乘。内部使用了一个for循环从1n,每次循环都将当前循环变量i乘以result,最终result的值就是n的阶乘。

(扩展)递归方式实现阶乘(初学者了解就好)

#include <iostream>
using namespace std;unsigned long long factorial(unsigned int n) {if (n == 0)return 1;elsereturn n * factorial(n - 1);
}int main() {unsigned int number;cout << "请输入一个非负整数:";cin >> number;cout << number << " 的阶乘是:" << factorial(number) << endl;return 0;
}

递归是一种在计算机科学和数学中广泛使用的解决问题的方法,它的核心思想是“自我调用”,即在一个函数或子程序中直接或间接地调用自身来解决问题的一部分,直到达到一个可以直接解决的最简单情况,这个最简单的情况通常被称为“基本情况”或“边界条件”。

递归分为两部:

  1. 基本情况:这是递归调用的终止条件,当问题规模缩小到足够小,可以直接求解而不需再次调用自身时,就到达了基本情况。例如,在计算阶乘时,0! = 11! = 1 就是基本情况。

  2. 递归步骤:这是递归的核心部分,它将问题分解成一个或多个较小的相同问题,然后通过调用自身来解决这些较小的问题。递归步骤应该保证每次调用都在朝着基本情况靠近,否则可能导致无限递归。

注意事项

  • 计算阶乘时,由于结果可能非常大,需要使用unsigned long long类型来存储结果,避免溢出。
  • 对于非常大的数,上述方法可能无法得到准确结果,因为它们超出了数据类型的表示范围。在实际应用中,可以考虑使用高精度算法或专门的大数库来处理大数阶乘。
  • 递归方法虽然简洁,但对于较大的数可能导致栈溢出,因此在实际编程中应谨慎使用。如果要计算大数的阶乘,循环方法通常更安全和可靠。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/47646.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go语言并发编程-同步和锁

同步和锁 概述 同步是并发编程的基本要素之一&#xff0c;我们通过channel可以完成多个goroutine间数据和信号的同步。 除了channel外&#xff0c;我们还可以使用go的官方同步包sync&#xff0c;sync/atomic 完成一些基础的同步功能。主要包含同步数据、锁、原子操作等。 一…

13. C++继承 | 详解 | 虚拟继承及底层实现

目录 1.定义 1.1继承的概念 1.2 继承的定义 2. 对象赋值转换 3. 继承中的作用域 a. 隐藏/重定义 (Hiding/Redefinition) b. 重载 (Overloading) c. 重写/覆盖 (Overriding) d. 编译报错 (Compilation Error) 4. 派生类的默认成员函数 构造 拷贝构造 运算符重载 析…

Android 14 开机时间优化措施

Android开机优化系列文档-CSDN博客 Android 14 开机时间优化措施汇总-CSDN博客Android 14 开机时间优化措施-CSDN博客根据systrace报告优化系统时需要关注的指标和优化策略-CSDN博客Android系统上常见的性能优化工具-CSDN博客Android上如何使用perfetto分析systrace-CSDN博客A…

python __getattr__与__getattribute__的区别

python __getattr__与__getattribute__的区别 在Python中,__getattr__和__getattribute__都是用于访问对象属性的特殊方法,但它们在实现和使用上有一些重要的区别。 1. __getattr__ __getattr__ 是一个在访问对象的属性时被调用的特殊方法。它接收一个属性名作为参数,并在…

win11将bat文件固定到“开始“屏幕

一、为bat文件创建快捷方式 (假设bat文件的全名为运行脚本.bat) 右键bat文件&#xff0c;点击显示更多选项 右键菜单选择发送到(N)-桌面快捷方式 二、获取快捷方式的路径 返回桌面&#xff0c;选中创建好的快捷方式&#xff0c;按AltEnter&#xff0c;切换到安全选项卡 鼠…

JCR一区级 | Matlab实现PSO-Transformer-LSTM多变量回归预测

JCR一区级 | Matlab实现PSO-Transformer-LSTM多变量回归预测 目录 JCR一区级 | Matlab实现PSO-Transformer-LSTM多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现PSO-Transformer-LSTM多变量回归预测&#xff0c;粒子群优化Transformer结合LST…

DCMM认证|DCMM认证需要怎么做?

DCMM&#xff08;Data Center Management Methodology&#xff09;是由中国信息通信研究院&#xff08;CAICT&#xff09;推出的一种数据中心管理方法论。想要进行DCMM认证&#xff0c;可以按照以下步骤进行&#xff1a; 1.了解DCMM认证标准&#xff1a;详细了解DCMM认证标准的…

C++--find

find 在[first,last)区间找第一个等于val的元素。 template<class InputIterator, class T> InputIterator find(InputIterator first,//起始迭代器 InputIterator last, //结束迭代器 const T& val); //需要查找的值 源码剖析 template<class InputI…

Nginx的核心功能

1. Nginx的核心功能 1.1 nginx反向代理功能 正向代理 代理的为客户端&#xff0c;对于服务器不知道真实客户的信息。例如&#xff1a;翻墙软件 反向代理服务器 代理的为服务器端。对于客户来说不知道服务器的信息。例如&#xff1a;nginx 项目部署图 web项目部署的虚拟机和Ng…

鸿蒙语言基础类库:【@system.notification (通知消息)】

通知消息 说明&#xff1a; 从API Version 7 开始&#xff0c;该接口不再维护&#xff0c;推荐使用新接口[ohos.notification]。本模块首批接口从API version 3开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 导入模块 import notification fro…

httpx 的使用

httpx 是一个可以支持 HTTP/2.0 的库 还有一个是&#xff1a; hyper 库 这里有一个由HTTP/2.0的网站&#xff1a; https://spa16.scrape.center/ 使用 requests 库 进行爬取 import requests url https://spa16.scrape.center/ response requests.get(url) print(response…

达梦数据库的系统视图v$arch_file

达梦数据库的系统视图v$arch_file 在达梦数据库中&#xff0c;V$ARCH_FILE 是一个动态性能视图&#xff0c;用于显示当前数据库的归档日志文件信息。这个视图可以帮助数据库管理员监控和管理归档日志文件&#xff0c;确保数据库的备份和恢复过程顺利进行。 查询本地归档日志信…

Unity UGUI Image Maskable

在Unity的UGUI系统中&#xff0c;Maskable属性用于控制UI元素是否受到父级遮罩组件的影响。以下是关于这个属性的详细说明和如何使用&#xff1a; Maskable属性 Maskable属性&#xff1a; 当你在GameObject上添加一个Image组件&#xff08;比如UI面板或按钮&#xff09;时&…

ctfshow-web入门-php特性(web127-web131)

目录 1、web127 2、web128 3、web129 4、web130 5、web131 1、web127 代码审计&#xff1a; $ctf_show md5($flag); 将 $flag 变量进行 MD5 哈希运算&#xff0c;并将结果赋值给 $ctf_show。 $url $_SERVER[QUERY_STRING]; 获取当前请求的查询字符串&#xff08;que…

开源防病毒工具--ClamAV

产品文档&#xff1a;简介 - ClamAV 文档 开源地址&#xff1a;Cisco-Talos/clamav&#xff1a;ClamAV - 文档在这里&#xff1a;https://docs.clamav.net (github.com) 一、引言 ClamAV&#xff08;Clam AntiVirus&#xff09;是一个开源的防病毒工具&#xff0c;广泛应用…

【算法专题】归并排序

目录 1. 排序数组 2. 交易逆序对的总数 3. 计算右侧小于当前元素的个数 4. 翻转对 总结 1. 排序数组 912. 排序数组 - 力扣&#xff08;LeetCode&#xff09; 今天我们使用归并排序来对数组进行排序&#xff0c;实际上&#xff0c;归并排序和快速排序是有一定相似之处的&a…

Android View的绘制流程

1.不管是View的添加&#xff0c;还是调用View的刷新方法invalidate()或者requestLayout()&#xff0c;绘制都是从ViewRootImpl的scheduleTraversals()方法开始 void scheduleTraversals() {if (!mTraversalScheduled) {mTraversalScheduled true;mTraversalBarrier mHandler…

讲解js的call、apply和bind区别?

在 JavaScript 中&#xff0c;call、apply 和 bind 是用于改变函数执行上下文&#xff08;this 指向&#xff09;的方法&#xff0c;它们之间的区别如下&#xff1a; call&#xff1a; call() 方法调用一个函数&#xff0c;其第一个参数是要设置为函数执行上下文的…

Linux中nohup(no hang up)不挂起,用于在系统后台不挂断地运行命令,即使退出终端也不会影响程序的运行。

nohup的英文全称是 no hang up&#xff0c;即“不挂起”。这个命令在Linux或Unix系统中非常有用&#xff0c;主要用于在系统后台不挂断地运行命令&#xff0c;即使退出终端也不会影响程序的运行。默认情况下&#xff08;非重定向时&#xff09;&#xff0c;nohup会将输出写入一…

根据非满秩校验矩阵H在GF(2^m)上求解生成矩阵G

注1:如果校验矩阵H满秩,请参考:根据H在有限域GF(2^m)上求解生成矩阵G 注2:如果校验矩阵H不满秩,即存在冗余行。在这种情况下,编码时可以采用H的零空间上的一组基来编码,在译码时可以使用所有行做校验。 冗余行直观上构造了高列重的LDPC码,它们和编码时用到的一组基底…