k8s集群 安装配置 Prometheus+grafana+alertmanager

k8s集群 安装配置 Prometheus+grafana+alertmanager

  • k8s环境如下:
    • 机器规划:
  • node-exporter组件安装和配置
    • 安装node-exporter
    • 通过node-exporter采集数据
      • 显示192.168.40.180主机cpu的使用情况
      • 显示192.168.40.180主机负载使用情况
  • Prometheus server安装和配置
    • 创建sa账号,对sa做rbac授权
    • 创建prometheus数据存储目录
    • 安装Prometheus server服务
    • 通过deployment部署prometheus
    • 给prometheus pod创建一个service
    • Prometheus热加载
  • 可视化UI界面Grafana的安装和配置
    • 安装Grafana
      • Grafana界面接入Prometheus数据源
    • 配置grafana界面:
      • 导入的监控模板,可在如下链接搜索
      • 如果Grafana导入Prometheusz之后,发现仪表盘没有数据,如何排查?
  • 安装kube-state-metrics组件
    • kube-state-metrics是什么?
    • 安装kube-state-metrics组件

k8s环境如下:

k8s集群: k8s的控制节点
ip:192.168.40.110
主机名:k8smaster1
配置:4vCPU/4Gi内存

k8s的工作节点:
ip:192.168.40.111
主机名:k8snode1
配置:4vCPU/4Gi内存

k8s版本1.25

机器规划:

我的实验环境使用的k8s集群是一个master节点和一个node节点
master节点的机器ip是192.168.40.110,主机名是k8smaster1
node节点的机器ip是192.168.40.111,主机名是k8snode1

node-exporter组件安装和配置

node-exporter介绍
node-exporter可以采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。

安装node-exporter

node-exporter.tar.gz镜像压缩包上传到k8s的各个节点,手动解压:
链接:https://pan.baidu.com/s/1EBsJPfWDO3c1qMeaESe5Ig?pwd=7bbw
提取码:7bbw

kubectl create ns monitor-sa
ctr -n=k8s.io images import node-exporter.tar.gz
docker load -i node-exporter.tar.gz

node-export.yaml
链接:https://pan.baidu.com/s/1wqaDok9afK58AGTR-QlvGg?pwd=fjfr
提取码:fjfr

cat  node-export.yaml
kind: DaemonSet  #可以保证k8s集群的每个节点都运行完全一样的podspec:hostPID: truehostIPC: truehostNetwork: true
# hostNetwork、hostIPC、hostPID都为True时,表示这个Pod里的所有容器
#会直接使用宿主机的网络,直接与宿主机进行IPC(进程间通信)通信,可以看到宿主机里正在运行的所有进程。
#加入了hostNetwork:true会直接将我们的宿主机的9100端口映射出来
#从而不需要创建service 在我们的宿主机上就会有一个9100的端口cpu: 0.15  #这个容器运行至少需要0.15核cpusecurityContext:privileged: true  #开启特权模式args:- --path.procfs  #配置挂载宿主机(node节点)的路径- /host/proc- --path.sysfs  #配置挂载宿主机(node节点)的路径- '"^/(sys|proc|dev|host|etc)($|/)"'#通过正则表达式忽略某些文件系统挂载点的信息收集volumeMounts:- name: devmountPath: /host/dev- name: procmountPath: /host/proc- name: sysmountPath: /host/sys- name: rootfsmountPath: /rootfs
#将主机/dev、/proc、/sys这些目录挂在到容器中,这是因为我们采集的很多节点数据都是通过这些文件来获取系统信息的。

通过kubectl apply更新node-exporter.yaml文件

kubectl apply -f node-export.yaml

查看node-exporter是否部署成功

kubectl get pods -n monitor-sa

显示如下,看到pod的状态都是running,说明部署成功

在这里插入图片描述

通过node-exporter采集数据

显示192.168.40.180主机cpu的使用情况

curl  http://虚拟机ip:9100/metrics
curl http://192.168.40.110:9100/metrics | grep node_cpu_seconds

在这里插入图片描述

  • #HELP:解释当前指标的含义,上面表示在每种模式下node节点的cpu花费的时间,以s为单位
  • #TYPE:说明当前指标的数据类型,上面是counter类型
node_cpu_seconds_total{cpu="0",mode="idle"}
  • cpu0上idle进程占用CPU的总时间,CPU占用时间是一个只增不减的度量指标,从类型中也可以看出node_cpu的数据类型是counter(计数器)
  • counter计数器:只是采集递增的指标

显示192.168.40.180主机负载使用情况

curl http://192.168.40.180:9100/metrics | grep node_load

在这里插入图片描述

  • node_load1该指标反映了当前主机在最近一分钟以内的负载情况,系统的负载情况会随系统资源的使用而变化,因此node_load1反映的是当前状态,数据可能增加也可能减少,从注释中可以看出当前指标类型为gauge(标准尺寸)
  • gauge标准尺寸:统计的指标可增加可减少

Prometheus server安装和配置

创建sa账号,对sa做rbac授权

创建一个sa账号monitor

kubectl create serviceaccount monitor -n monitor-sa 

把sa账号monitor通过clusterrolebing绑定到clusterrole上

kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin  --serviceaccount=monitor-sa:monitor

注意:行上面授权可能回报错,那就需要下面的授权命令

kubectl create clusterrolebinding monitor-clusterrolebinding-1  -n monitor-sa --clusterrole=cluster-admin   --user=system:serviceaccount:monitor:monitor-sa

创建prometheus数据存储目录

在k8s集群的xianchaonode1节点上创建数据存储目录

#在节点创建
mkdir /data
chmod 777 /data/

安装Prometheus server服务

创建一个configmap存储卷,用来存放prometheus配置信息
通过kubectl apply更新configmap
prometheus-cfg.yaml文件上传到k8s控制节点k8smaster1上:
链接:https://pan.baidu.com/s/1lQGQLp7ikDHSanOusSMTWQ?pwd=w6w4
提取码:w6w4

kubectl apply  -f  prometheus-cfg.yaml
cat prometheus-cfg.yaml
      scrape_interval: 15s  #采集目标主机监控据的时间间隔scrape_timeout: 10s  # 数据采集超时时间,默认10sevaluation_interval: 1m   #触发告警检测的时间,默认是1m#我们写了超过80%的告警,结果收到多条告警,但是真实超过80%的只有一个时间点。#这是另外一个参数影响的
evaluation_interval #这个是触发告警检测的时间,默认为1m。假如我们的指标是5m被拉取一次。
#检测根据evaluation_interval 1m一次,所以在值被更新前,我们一直用的旧值来进行多次判断,造成了1m一次,同一个指标被告警了4次。
scrape_configs:
#scrape_configs:配置数据源,称为target,每个target用job_name命名。又分为静态配置和服务发现- job_name: 'kubernetes-node'kubernetes_sd_configs:
#使用的是k8s的服务发现- role: node
# 使用node角色,它使用默认的kubelet提供的http端口来发现集群中每个node节点。relabel_configs:
#重新标记- source_labels: [__address__] #配置的原始标签,匹配地址regex: '(.*):10250'   #匹配带有10250端口的url
        replacement: '${1}:9100'  #把匹配到的ip:10250的ip保留target_label: __address__ #新生成的url是${1}获取到的ip:9100action: replace- action: labelmap 
#匹配到下面正则表达式的标签会被保留,如果不做regex正则的话,默认只是会显示instance标签regex: __meta_kubernetes_node_label_(.+)

通过deployment部署prometheus

镜像prometheus-2-2-1.tar.gz上传到k8s的工作节点k8snode1上,手动解压
链接:https://pan.baidu.com/s/1arlhVb0q-9tWe9KHZG1Htg?pwd=j6m1
提取码:j6m1

ctr -n=k8s.io images import prometheus-2-2-1.tar.gz
#1.24前用  docker load -i prometheus-2-2-1.tar.gz

prometheus-deploy.yaml 上传至k8smaster1
链接:https://pan.baidu.com/s/11QOcz5udgbMpxGoYD6pP9w?pwd=rkp6
提取码:rkp6

kubectl apply -f prometheus-deploy.yaml
cat prometheus-deploy.yaml- --storage.tsdb.path=/prometheus  #旧数据存储目录- --storage.tsdb.retention=720h    #何时删除旧数据,默认为15天。- --web.enable-lifecycle   #开启热加载

注意:在上面的prometheus-deploy.yaml文件有个nodeName字段,这个就是用来指定创建的这个prometheus的pod调度到哪个节点上,我们这里让nodeName=k8snode1,也即是让pod调度到k8snode1节点上,因为k8snode1节点我们创建了数据目录/data,所以大家记住:你在k8s集群的哪个节点创建/data,就让pod调度到哪个节点,nodeName根据你们自己环境主机去修改即可。

查看prometheus是否部署成功

kubectl get pods -n monitor-sa

在这里插入图片描述

给prometheus pod创建一个service

prometheus-svc.yaml文件上传到k8s的控制节点k8smaster1上:
链接:https://pan.baidu.com/s/1j9Nz7trUT6rgZ9kS-ANb7Q?pwd=hgql
提取码:hgql

kubectl apply -f prometheus-svc.yaml

查看service在物理机映射的端口

kubectl get svc -n monitor-sa

在这里插入图片描述

通过上面可以看到service在宿主机上映射的端口是31090,这样我们访问k8s集群的master1节点的ip:31090,就可以访问到prometheus的web ui界面了
#访问prometheus web ui界面
火狐浏览器输入如下地址:

http://192.168.40.110:31090/graph

可看到如下页面:

在这里插入图片描述

点击页面的Status->Targets,可看到如下,说明我们配置的服务发现可以正常采集数据
在这里插入图片描述

Prometheus热加载

为了每次修改配置文件可以热加载prometheus,也就是不停止prometheus,就可以使配置生效,想要使配置生效可用如下热加载命令:

kubectl get pods -n monitor-sa -o wide -l app=prometheus

在这里插入图片描述

10.244.249.2是prometheus的pod的ip地址,如何查看prometheus的pod ip

想要使配置生效可用如下命令热加载:

curl -X POST http://10.244.249.2:9090/-/reload
  • 热加载速度比较慢,可以暴力重启prometheus,如修改上面的prometheus-cfg.yaml文件之后,可执行如下强制删除:
kubectl delete -f prometheus-cfg.yaml
kubectl delete -f prometheus-deploy.yaml
  • 然后再通过apply更新:
kubectl apply -f prometheus-cfg.yaml
kubectl apply -f prometheus-deploy.yaml

注意:线上最好热加载,暴力删除可能造成监控数据的丢失

可视化UI界面Grafana的安装和配置

安装Grafana

镜像heapster-grafana-amd64_v5_0_4.tar.gz上传到k8s的工作节点k8snode1上,手动解压:
链接:https://pan.baidu.com/s/1CMP6Ju-Zi-4dmJy2eSVtew?pwd=fkls
提取码:fkls

ctr -n=k8s.io images import  heapster-grafana-amd64_v5_0_4.tar.gz

grafana.yaml文件上传到k8s的控制节点:

kubectl apply -f grafana.yaml

查看grafana是否创建成功:

kubectl get pods -n kube-system -l task=monitoring

在这里插入图片描述

Grafana界面接入Prometheus数据源

查看grafana前端的service

kubectl get svc -n kube-system | grep grafana  

在这里插入图片描述

登陆grafana,在浏览器访问
192.168.40.110:30551

配置grafana界面:

选择Create your first data source
Name: Prometheus
Type: Prometheus
HTTP 处的URL写 如下:

http://prometheus.monitor-sa.svc:9090

配置好的整体页面如下:
在这里插入图片描述

点击左下角Save & Test,出现如下Data source is working,说明prometheus数据源成功的被grafana接入了

导入的监控模板,可在如下链接搜索

https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes

上面Save & Test测试没问题之后,就可以返回Grafana主页面
点击左侧+号下面的Import,出现如下界面
在这里插入图片描述

可直接导入node_exporter.json监控模板,这个可以把node节点指标显示出来
node_exporter.json
链接:https://pan.baidu.com/s/1lK43XIWKuMYiQoWBAtJJ-Q?pwd=j01k
提取码:j01k

在这里插入图片描述
在这里插入图片描述

docker_rev1.json,显示容器资源指标的
链接:https://pan.baidu.com/s/1F_9ApBvKCV3lkHvxPLP-OQ?pwd=wkph
提取码:wkph

导入docker_rev1.json监控模板,步骤和上面导入node_exporter.json步骤一样,导入之后显示如下:
在这里插入图片描述

如果Grafana导入Prometheusz之后,发现仪表盘没有数据,如何排查?

打开grafana界面,找到仪表盘对应无数据的图标
在这里插入图片描述

Edit之后出现如下:

在这里插入图片描述

node_cpu_seconds_total 就是grafana上采集的cpu的时间,需要到prometheus ui界面看看采集的指标是否是node_cpu_seconds_total

在这里插入图片描述

如果在prometheus ui界面输入node_cpu_seconds_total没有数据,那就看看是不是prometheus采集的数据是node_cpu_seconds_totals,怎么看呢?

在这里插入图片描述

安装kube-state-metrics组件

kube-state-metrics是什么?

  • kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,
  • 比如Pod副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?我有多少job在运行中。

安装kube-state-metrics组件

创建sa,并对sa授权
kube-state-metrics-rbac.yaml文件上传到k8s的控制节点:
链接:https://pan.baidu.com/s/1fNAovsSfabcQMTpX4AknnQ?pwd=m6r0
提取码:m6r0

kubectl apply -f kube-state-metrics-rbac.yaml

安装kube-state-metrics组件
kube-state-metrics_1_9_0.tar.gz组件上传到k8s各个工作节点,手动解压:
链接:https://pan.baidu.com/s/1UufIAWnnQgP1vYSTvushSw?pwd=uunh
提取码:uunh

ctr -n=k8s.io images import kube-state-metrics_1_9_0.tar.gz

kube-state-metrics-deploy.yaml上传到k8smaster1节点
链接:https://pan.baidu.com/s/1GnMeja2VQUwHXj9MPsCHqQ?pwd=n0o9
提取码:n0o9

kubectl apply -f kube-state-metrics-deploy.yaml

查看kube-state-metrics是否部署成功

kubectl get pods -n kube-system -l app=kube-state-metrics

在这里插入图片描述

创建service
kube-state-metrics-svc.yaml文件上传到k8s的k8smaster1节点:
链接:https://pan.baidu.com/s/1DjZuLFDcH9mjRXY6CHJNfw?pwd=uo52
提取码:uo52

kubectl apply -f kube-state-metrics-svc.yaml

查看service是否创建成功

kubectl get svc -n kube-system | grep kube-state-metrics

在这里插入图片描述

在grafana web界面导入Kubernetes Cluster (Prometheus)-1577674936972.json和Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json

导入Kubernetes Cluster (Prometheus)-1577674936972.json文件
链接:https://pan.baidu.com/s/1SpGM2hb0uuEsyJaYnhE_Rw?pwd=u1dz
提取码:u1dz
在这里插入图片描述

在grafana web界面导入Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json
链接:https://pan.baidu.com/s/1v-zwCmwqC3iRix1M5s_GnA?pwd=2jhl
提取码:2jhl
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/47389.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动驾驶AVM环视算法–全景和标定全功能算法实现和exe测试demo

参考:全景和标定全功能算法实现和exe测试demo-金书世界 1、测试环境 opencv310vs2022 2、使用的编程语言 c和c 3、测试的demo的获取 更新:测试的exe程序,无需解压码就可以体验算法测试效果 百度网盘: 链接:http…

代理IP服务中的代理池大小有何影响?

在当今数字化时代,网络爬虫已经成为获取各类信息必不可少的工具。在大规模数据抓取中,使用单一 IP 地址或同一 IP 代理往往会面临抓取可靠性降低、地理位置受限、请求次数受限等一系列问题。为了克服这些问题,构建代理池成为一种有效的解决方…

基于若依的ruoyi-nbcio流程管理系统修正自定义业务表单的回写bug

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 http://218.75.87.38:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码: h…

VUE3 播放RTSP实时、回放(NVR录像机)视频流(使用WebRTC)

1、下载webrtc-streamer,下载的最新window版本 Releases mpromonet/webrtc-streamer GitHub 2、解压下载包 3、webrtc-streamer.exe启动服务 (注意:这里可以通过当前文件夹下用cmd命令webrtc-streamer.exe -o这样占用cpu会很少&#xff0c…

idea Apipost 插件导出接口文档字段类型全部是string

idea版本:2023.2.1 Apipost-Helper-2.0插件版本: 联系官方客服后,更换插件版本,问题解决。更换后的插件版本为: 插件链接放在文章首部了,可直接下载,使用idea直接安装这个zip包,无需…

深度学习pytorch学到哪种程度就算入门了?

在开始前分享一些pytorch的资料需要的同学评论888即可拿走 是我根据网友给的问题精心整理的PyTorch这个框架,可以读一些入门书。 PyTorch本身是一个极其庞大的框架,里面有数据读取、高性能计算、自动微分、模型导出、分布式训练等等。 我觉得能用这个框…

ELK日志管理与应用

目录 一.ELK收集nginx日志 二.收集tomcat日志 三.Filebeat 一.ELK收集nginx日志 1.搭建好ELKlogstashkibana架构 2.关闭防火墙和selinux systemctl stop firewalld setenforce 0 3.安装nginx [rootlocalhost ~]# yum install epel-release.noarch -y [rootlocalhost …

使用Django框架实现音频上传功能

数据库设计(models.py) class Music(models.Model):""" 音乐 """name models.CharField(verbose_name"音乐名字", max_length32)singer models.CharField(verbose_name"歌手", max_length32)# 本质…

Hadoop-34 HBase 安装部署 单节点配置 hbase-env hbase-site 超详细图文 附带配置文件

点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: HadoopHDFSMapReduceHiveFlumeSqoopZookeeperHBase 正在 章节内容 上节我们完成了: HBase的由…

Apache Paimon 在蚂蚁的应用

摘要 :本文整理自 Apache Paimon Committer 闵文俊老师在5月16日 Streaming Lakehouse Meetup Online 上的分享。内容主要分为以下四个部分: 什么是 Paimon蚂蚁 Paimon 应用场景蚂蚁 Paimon 功能改进未来规划 一、什么是 Paimon 1. 实时更新 Paimon 是…

Hadoop3:HDFS存储优化之小文件归档

一、情景说明 我们知道,NameNode存储一个文件元数据,默认是150byte大小的内存空间。 那么,如果出现很多的小文件,就会导致NameNode的内存占用。 但注意,存储小文件所需要的磁盘容量和数据块的大小无关。 例如&#x…

用户注册业务逻辑、接口设计和实现、前端逻辑

一、用户注册业务逻辑分析 二、用户注册接口设计和定义 2.1. 设计接口基本思路 对于接口的设计,我们要根据具体的业务逻辑,设计出适合业务逻辑的接口。设计接口的思路: 分析要实现的业务逻辑: 明确在这个业务中涉及到几个相关子…

如何通过企业微信会话存档保护企业利益?

赵总: 张经理,最近行业内频发数据泄露事件,我们的客户资料和内部沟通记录安全吗? 张经理: 赵总,我们已经采取了一系列措施来加强数据安全。特别是针对企业微信的沟通记录,我们最近引入了安企神软件,它能很…

打印室预约小程序的设计

管理员账户功能包括:系统首页,个人中心,用户管理,附近打印店管理,文件打印管理,当前预约管理,预约历史管理,打印记录管理 开发系统:Windows 架构模式:SSM JD…

神经网络构造

目录 一、神经网络骨架:二、卷积操作:三、卷积层:四、池化层:五、激活函数(以ReLU为例): 一、神经网络骨架: import torch from torch import nn#神经网络 class CLH(nn.Module):de…

华为的热机备份和流量限制

要求: 12,对现有网络进行改造升级,将当个防火墙组网改成双机热备的组网形式,做负载分担模式,游客区和DMZ区走FW4,生产区和办公区的流量走FW5 13,办公区上网用户限制流量不超过100M,…

Redis实战—附近商铺、用户签到、UV统计

本博客为个人学习笔记,学习网站与详细见:黑马程序员Redis入门到实战 P88 - P95 目录 附近商铺 数据导入 功能实现 用户签到 签到功能 连续签到统计 UV统计 附近商铺 利用Redis中的GEO数据结构实现附近商铺功能,常见命令如下图所示。…

vue3前端开发-如何让自己的网站适合SEO排名规则

vue3前端开发-如何让自己的网站适合SEO排名规则!我们大家都知道,原始出生的vue3项目,原始代码层面,是没有meta标签的,也就是说,不适合SEO排名规则。那么我们能不能自己增加呢?答案是&#xff1a…

Photoneo 3D 网格划分

Photoneo 3D 网格划分是一种多功能软件解决方案,专为快速、精确的 3D 模型而设计 从多个 3D 扫描或来自 Photoneo 3D 传感器的连续 3D 数据流创建。它 旨在实现适用于各种应用的高级 3D 数据采集,例如 机器人引导、质量检查和逆向工程。 它以两个单独的库…

本地部署,edge-tts文本转语音解决方案

目录 什么是 edge-tts? 主要特点 应用场景 优势 开始使用 edge-tts 命令行安装 edge-tts 库: docker安装 未来展望 总结 https://github.com/rany2/edge-ttshttps://github.com/rany2/edge-tts 随着科技的进步,文本转语音&#xff…