免疫优化算法(Immune Optimization Algorithm, IOA)在物流配送中心选址中的应用是通过模拟免疫系统的进化过程来解决选址优化问题。物流配送中心选址问题涉及到如何在给定区域内选择最优的位置,以最大化服务覆盖并最小化运输成本。
免疫优化算法概述
免疫优化算法是一种启发式优化算法,其灵感来源于生物的免疫系统。该算法通常包括以下步骤:
免疫细胞表示:在算法中,解决方案被表示为抗原(antigen),而每个抗原具有一组特定的特征值或变量(例如潜在的配送中心位置)。克隆和突变:算法模仿免疫系统中的克隆和突变过程,通过复制和改变当前的最优解(抗体),以探索新的解决方案空间。免疫选择:根据每个抗原的适应度(在物流选址中可以是服务范围、成本等指标的综合评价),选择适应性较高的抗原作为下一代解决方案。进化过程:通过重复克隆、突变和选择过程,逐步优化找到最优解决方案。主函数代码
%% 免疫优化算法在物流配送中心选址中的应用
%% 清空环境
clc
clear
%% 算法基本参数
sizepop=50; % 种群规模
overbest=10; % 记忆库容量
MAXGEN=100; % 迭代次数
pcross=0.5; % 交叉概率
pmutation=0.4; % 变异概率
ps=0.95; % 多样性评价参数
length=6; % 配送中心数
M=sizepop+overbest;
%% step1 识别抗原,将种群信息定义为一个结构体
individuals = struct('fitness',zeros(1,M), 'concentration',zeros(1,M),'excellence',zeros(1,M),'chrom',[]);
%% step2 产生初始抗体群
individuals.chrom = popinit(M,length);
trace=[]; %记录每代最个体优适应度和平均适应度
%% 迭代寻优
for iii=1:MAXGEN
%% step3 抗体群多样性评价
for i=1:M
individuals.fitness(i) = fitness(individuals.chrom(i,:)); % 抗体与抗原亲和度(适应度值)计算
individuals.concentration(i) = concentration(i,M,individuals); % 抗体浓度计算
end
% 综合亲和度和浓度评价抗体优秀程度,得出繁殖概率
individuals.excellence = excellence(individuals,M,ps);
% 记录当代最佳个体和种群平均适应度
[best,index] = min(individuals.fitness); % 找出最优适应度
bestchrom = individuals.chrom(index,:); % 找出最优个体
average = mean(individuals.fitness); % 计算平均适应度
trace = [trace;best,average]; % 记录
%% step4 根据excellence,形成父代群,更新记忆库(加入精英保留策略,可由s控制)
bestindividuals = bestselect(individuals,M,overbest); % 更新记忆库
individuals = bestselect(individuals,M,sizepop); % 形成父代群
%% step5 选择,交叉,变异操作,再加入记忆库中抗体,产生新种群
individuals = Select(individuals,sizepop); % 选择
individuals.chrom = Cross(pcross,individuals.chrom,sizepop,length); % 交叉
individuals.chrom = Mutation(pmutation,individuals.chrom,sizepop,length); % 变异
individuals = incorporate(individuals,sizepop,bestindividuals,overbest); % 加入记忆库中抗体
end
%% 画出免疫算法收敛曲线
figure(1)
plot(trace(:,1));
hold on
plot(trace(:,2),'--');
legend('最优适应度值','平均适应度值')
title('免疫算法收敛曲线','fontsize',12)
xlabel('迭代次数','fontsize',12)
ylabel('适应度值','fontsize',12)
%% 画出配送中心选址图
%城市坐标
city_coordinate=[1304,2312;3639,1315;4177,2244;3712,1399;3488,1535;3326,1556;3238,1229;4196,1044;4312,790;4386,570;
3007,1970;2562,1756;2788,1491;2381,1676;1332,695;3715,1678;3918,2179;4061,2370;3780,2212;3676,2578;
4029,2838;4263,2931;3429,1908;3507,2376;3394,2643;3439,3201;2935,3240;3140,3550;2545,2357;2778,2826;2370,2975];
carge=[20,90,90,60,70,70,40,90,90,70,60,40,40,40,20,80,90,70,100,50,50,50,80,70,80,40,40,60,70,50,30];
%找出最近配送点
for i=1:31
distance(i,:)=dist(city_coordinate(i,:),city_coordinate(bestchrom,:)');
end
[a,b]=min(distance');
index=cell(1,length);
for i=1:length
%计算各个派送点的地址
index{i}=find(b==i);
end
figure(2)
title('最优规划派送路线')
cargox=city_coordinate(bestchrom,1);
cargoy=city_coordinate(bestchrom,2);
plot(cargox,cargoy,'rs','LineWidth',2,...
'MarkerEdgeColor','r',...
'MarkerFaceColor','b',...
'MarkerSize',20)
hold on
plot(city_coordinate(:,1),city_coordinate(:,2),'o','LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',10)
for i=1:31
x=[city_coordinate(i,1),city_coordinate(bestchrom(b(i)),1)];
y=[city_coordinate(i,2),city_coordinate(bestchrom(b(i)),2)];
plot(x,y,'c');hold on
end
结果图
完整代码获取:https://mbd.pub/o/bread/ZpiVlJhw