【3】迁移学习模型

【3】迁移学习模型

文章目录

  • 前言
  • 一、安装相关模块
  • 二、训练代码
    • 2.1. 管理预训练模型
    • 2.2. 模型训练代码
    • 2.3. 可视化结果
    • 2.4. 类别函数
  • 总结


前言

主要简述一下训练代码

三叶青图像识别研究简概


一、安装相关模块

#xingyun的笔记本
print('============================xingyun的笔记本=============================')
%pip install d2l
%pip install Ipython
%pip install efficientnet_pytorch   #(可选)
%pip install timm

二、训练代码

整段代码大致分为四块: 管理预训练模型、模型训练、可视化结果、类别函数调用。

2.1. 管理预训练模型

用于管理要使用的迁移学习模型(可添加),这里主要是对EfficientNet系列模型 、ResNet系列模型、MobileNet系列模型进行迁移学习。

import collections
import math
import os
import shutil
import pandas as pd
import torch
import torchvision
import timm
from torch import nn
from d2l import torch as d2l
import re
from itertools import product
from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from efficientnet_pytorch import EfficientNet  
from sklearn.model_selection import KFold
from torchvision.models import resnet101, resnet152, resnet18, resnet34, resnet50,mobilenet,mobilenet_v2,mobilenet_v3_large, mobilenet_v3_small, mobilenetv2, mobilenetv3class FineTuneModel:"""管理预训练模型:1. EfficientNet系列模型  3. ResNet系列模型4. MobileNet系列模型"""def __init__(self, devices, num_classes,model_name):self.devices = devicesself.num_classes = num_classesself.model_name = model_namedef get_efficientnet(self):"""微调EfficientNet模型。:param model_name: EfficientNet模型的版本,如'efficientnet-b0'到'efficientnet-b7'。:return: 微调后的模型。"""# 加载预训练的EfficientNet模型finetune_net = EfficientNet.from_pretrained(self.model_name)# 替换输出层num_ftrs = finetune_net._fc.in_featuresfinetune_net._fc = nn.Linear(num_ftrs, self.num_classes)# 将模型参数分配到设备上finetune_net = finetune_net.to(self.devices[0])# 冻结所有层(除了最后的全连接层)for name, param in finetune_net.named_parameters():if 'fc' not in name:  # 不冻结全连接层param.requires_grad = False# 确保全连接层的参数可训练for param in finetune_net._fc.parameters():param.requires_grad = Truereturn finetune_netdef get_mobilenet(self):"""加载预训练的MobileNet模型并进行微调设置。'mobilenet','mobilenet_v2','mobilenet_v3_large', 'mobilenet_v3_small', 'mobilenetv2', 'mobilenetv3',"""# 加载预训练的MobileNetV2模型base_model_func = getattr(torchvision.models, self.model_name)base_model = base_model_func(pretrained=True)if self.model_name == "mobilenet_v2":num_features = base_model.classifier[-1].in_features# 定义一个新的分类头classifier = nn.Sequential(nn.Linear(num_features, 256),nn.ReLU(),nn.Linear(256, self.num_classes))# 替换原有的分类头base_model.classifier = classifierelse:# 获取最后一个卷积层的输出通道数量num_features = base_model.features[-1].out_channels# 定义一个新的分类头classifier = nn.Sequential(nn.Linear(num_features, 256),nn.ReLU(),nn.Linear(256, self.num_classes))# 替换原有的分类头base_model.classifier = classifier# 将模型参数分配到指定设备base_model = base_model.to(self.devices[0])# 冻结特征提取器的参数for name, param in base_model.named_parameters():if 'classifier' not in name:  # 确保只冻结特征提取部分的参数param.requires_grad = Falsereturn base_modeldef get_resnet(self):#加载预训练的resnet模型"""resnet101, resnet152, resnet18, resnet34, resnet50"""# 从torchvision.models模块中动态获取模型base_model_func = getattr(torchvision.models, self.model_name)base_model = base_model_func(pretrained=True)num_features = base_model.fc.in_features# 定义一个新的分类头classifier = nn.Sequential(nn.Linear(num_features, 256),nn.ReLU(),nn.Linear(256,self.num_classes))# 替换原有的全连接层(分类头)base_model.fc = classifier# 将模型参数分配到指定设备base_model = base_model.to(self.devices[0])# 冻结特征提取器的参数for name, param in base_model.named_parameters():if 'fc' not in name:  # 确保只冻结特征提取部分的参数param.requires_grad = Falsereturn base_model

2.2. 模型训练代码

包括数据处理、模型训练、参数调优、模型保存等。


class MyImageClassifier:"""1. 数据处理2. 模型训练3. 参数调优4. 模型保存"""def __init__(self, data_dir, target_dir, batch_size, valid_ratio,train_folder,test_folder):self.data_dir = data_dirself.target_dir = target_dirself.batch_size = batch_sizeself.valid_ratio = valid_ratioself.train_folder = train_folderself.test_folder = test_folderdef read_csv_labels(self, fname):"""读取fname来给标签字典返回一个文件名"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))def copyfile(self,filename, target_dir):"""将文件复制到目标目录"""os.makedirs(target_dir, exist_ok=True)shutil.copy(filename, target_dir)def reorg_train_valid(self,labels):"""将验证集从原始的训练集中拆分出来"""# 训练数据集中样本最少的类别中的样本数n = collections.Counter(labels.values()).most_common()[-1][1]# 验证集中每个类别的样本数n_valid_per_label = max(1, math.floor(n * self.valid_ratio))label_count = {}for train_file in os.listdir(os.path.join(self.data_dir, self.train_folder)):label = labels[train_file.split('.')[0]]fname = os.path.join(self.data_dir, self.train_folder, train_file)self.copyfile(fname, os.path.join(self.target_dir, 'train_valid_test','train_valid', label))if label not in label_count or label_count[label] < n_valid_per_label:self.copyfile(fname, os.path.join(self.target_dir, 'train_valid_test','valid', label))label_count[label] = label_count.get(label, 0) + 1else:self.copyfile(fname, os.path.join(self.target_dir, 'train_valid_test','train', label))return n_valid_per_labeldef reorg_test(self):"""在预测期间整理测试集,以方便读取"""for test_file in os.listdir(os.path.join(self.data_dir, self.test_folder)):self.copyfile(os.path.join(self.data_dir, self.test_folder, test_file),os.path.join(self.target_dir, 'train_valid_test', 'test','unknown'))def reorg_san_data(self,labels_csv):labels = self.read_csv_labels(os.path.join(self.data_dir,labels_csv))self.reorg_train_valid(labels)self.reorg_test()print('# 训练样本 :', len(labels))print('# 类别 :', len(set(labels.values())))"""以上为数据整理函数"""def classes(self):class_to_idx = {}# 遍历数据集文件夹中的子文件夹(每个子文件夹代表一个类别)for idx, class_name in enumerate(sorted(os.listdir(os.path.join(self.target_dir, 'train_valid_test', 'valid')))):if class_name.startswith('.'):continueclass_dir = os.path.join(os.path.join(self.target_dir, 'train_valid_test', 'valid'), class_name)  # 类别文件夹路径if os.path.isdir(class_dir):class_to_idx[idx] = class_nameprint(class_to_idx)print("============================")return class_to_idx#统计划分的训练集、验证集数量def count_samples(self):"""统计每个类别训练集和验证集的数量"""train_valid_test_dirs = ['train', 'valid']data_counts = {'class': []}for dir_name in train_valid_test_dirs:class_dir = os.path.join(self.target_dir, 'train_valid_test', dir_name)if dir_name not in data_counts:data_counts[dir_name] = []for class_name in os.listdir(class_dir):if class_name.startswith('.'):continueclass_sub_dir = os.path.join(class_dir, class_name)if os.path.isdir(class_sub_dir):if class_name not in data_counts['class']:data_counts['class'].append(class_name)for key in train_valid_test_dirs:if key not in data_counts:data_counts[key] = [0] * len(data_counts['class'])else:data_counts[key].append(0)data_counts[dir_name][data_counts['class'].index(class_name)] += len(os.listdir(class_sub_dir))df = pd.DataFrame(data_counts)return dfdef shuju_zq_jz(self,batch_size):#数据增强transform_train = torchvision.transforms.Compose([# 随机裁剪图像,所得图像为原始面积的0.08~1之间,高宽比在3/4和4/3之间。# 然后,缩放图像以创建224x224的新图像torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),ratio=(3.0/4.0, 4.0/3.0)),torchvision.transforms.RandomHorizontalFlip(),# 随机更改亮度,对比度和饱和度torchvision.transforms.ColorJitter(brightness=0.4,contrast=0.4,saturation=0.4),#转换为张量格式torchvision.transforms.ToTensor(),# 标准化图像的每个通道torchvision.transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])#测试时,我们只使用确定性的图像预处理操作transform_test = torchvision.transforms.Compose([torchvision.transforms.Resize(256),# 从图像中心裁切224x224大小的图片torchvision.transforms.CenterCrop(224),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])#读取整理后的含原始图像文件的数据集train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(os.path.join(self.target_dir, 'train_valid_test', folder),transform=transform_train) for folder in ['train', 'train_valid']]valid_ds, test_ds = [torchvision.datasets.ImageFolder(os.path.join(self.target_dir, 'train_valid_test', folder),transform=transform_test) for folder in ['valid', 'test']]train_iter, train_valid_iter = [torch.utils.data.DataLoader(dataset, batch_size, shuffle=True, drop_last=True)for dataset in (train_ds, train_valid_ds)]valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,drop_last=False)test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,drop_last=False)return train_iter,valid_iter,test_iter,train_valid_iter"""以上为数据处理函数"""#微调预训练模型def get_net(self,devices,num_classes,model_name,model_leibie):fine_tune_model = FineTuneModel(d2l.try_all_gpus(), num_classes=num_classes,model_name = model_name)  # 使用微调模型if model_leibie == 'get_efficientnet':base_model = fine_tune_model.get_efficientnet()elif model_leibie == 'get_mobilenet':base_model = fine_tune_model.get_mobilenet()elif model_leibie == 'get_resnet':base_model = fine_tune_model.get_resnet()return base_modeldef evaluate_loss(self,data_iter, net, devices):loss = nn.CrossEntropyLoss(reduction='none')  #reduction='none'表示不对损失进行平均或求和,而是返回每个样本的损失值。l_sum, n = 0.0, 0for features, labels in data_iter:features, labels = features.to(devices[0]), labels.to(devices[0])outputs = net(features)l = loss(outputs, labels)l_sum += l.sum()n += labels.numel() #累加样本数量到n中,labels.numel()返回标签张量中元素的个数return (l_sum / n).to('cpu') #计算所有样本的平均损失值,并将其移动到CPU上返回def train(self, net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay):net = nn.DataParallel(net, device_ids=devices).to(devices[0])trainer = torch.optim.SGD((param for param in net.parameters() if param.requires_grad), lr=lr, momentum=0.9, weight_decay=wd)scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)num_batches, timer = len(train_iter), d2l.Timer()legend = ['train loss', 'train acc', 'valid loss', 'valid acc']  # Add valid loss and accanimator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=legend)loss = nn.CrossEntropyLoss(reduction='none')best_acc = 0best_model_path = ""measures_list = []examples_sec_list = []for epoch in range(num_epochs):metric = d2l.Accumulator(3)net.train()  # Switch to training modefor i, (features, labels) in enumerate(train_iter):timer.start()features, labels = features.to(devices[0]), labels.to(devices[0])trainer.zero_grad()output = net(features)l = loss(output, labels).sum()l.backward()trainer.step()metric.add(l, labels.shape[0], d2l.accuracy(output, labels))timer.stop()if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches, (metric[0] / metric[1], metric[2] / metric[1], None, None))measures = f'train loss {metric[0] / metric[1]:.3f}, train acc {metric[2] / metric[1]:.3f}'if valid_iter is not None:net.eval()  # Switch to evaluation modevalid_metric = d2l.Accumulator(3)with torch.no_grad():for valid_features, valid_labels in valid_iter:valid_features, valid_labels = valid_features.to(devices[0]), valid_labels.to(devices[0])valid_output = net(valid_features)valid_l = loss(valid_output, valid_labels).sum()valid_metric.add(valid_l, valid_labels.shape[0], d2l.accuracy(valid_output, valid_labels))valid_acc = valid_metric[2] / valid_metric[1]animator.add(epoch + 1, (None, None, valid_metric[0] / valid_metric[1], valid_acc))measures += f', valid loss {valid_metric[0] / valid_metric[1]:.3f}, valid acc {valid_acc:.3f}'if valid_acc > best_acc:best_acc = valid_accbest_model_path = f'model_bests.pth'torch.save(net, best_model_path)print(f"Best model saved to {best_model_path} with accuracy {best_acc:.3f}")measures_list.append(measures)examples_sec = f'epoch {epoch}, {metric[1] * num_epochs / timer.sum():.1f} examples/sec on {str(devices)}'examples_sec_list.append(examples_sec)print(f'epoch {epoch}, ' + measures + f'\n{metric[1] * num_epochs / timer.sum():.1f} examples/sec on {str(devices)}')scheduler.step()for i, measure in enumerate(measures_list):print(f"Epoch {(i+1)}: {measure}")print(examples_sec_list)return measures_list, examples_sec_listdef get_valid_acc(self,measures):return float(re.search(r'valid acc (\d+\.\d+)', measures).group(1))# 训练参数调优def train_parameter_tuning(self, param_grid,num_classes,batch_size,model_name,model_leibie):# 使用网格搜索来搜索最佳超参数组合best_accuracy = 0best_params = None# 初始化列表,用于存储包含验证准确率和参数的元组  acc_param_list = [] measures_lt = []for params in product(*param_grid.values()):param_dict = dict(zip(param_grid.keys(), params))print("Training with params:", param_dict)# 创建和训练模型net = self.get_net(d2l.try_all_gpus(),num_classes,model_name,model_leibie)train_iter,valid_iter = self.shuju_zq_jz(batch_size)[0],self.shuju_zq_jz(batch_size)[1]measures_list,examples_sec_list = self.train(net, train_iter, valid_iter, **param_dict,devices = d2l.try_all_gpus())# 在验证集上评估模型性能# 使用正则表达式提取valid acc对应的数值best_measures = max(measures_list, key=self.get_valid_acc)valid_acc = float(re.search(r'valid acc (\d+\.\d+)', best_measures).group(1))print(best_measures)# 将验证准确率和参数字典合并为一个元组,并添加到列表中  acc_param_list.append((valid_acc, param_dict))  measures_lt.append(best_measures)#             net.load_state_dict(torch.load("model_best.pth"))  # 加载最佳模型net = torch.load('model_bests.pth')if valid_acc > best_accuracy:best_accuracy = valid_accbest_params = param_dictbest_net = net  # 这里的最佳网络是从最佳模型加载的for i,measure in enumerate(measures_lt):print(f"Trial {i+1}:")print(measure)print("========================================================")print()best_acc_index = max(range(len(acc_param_list)), key=lambda i: acc_param_list[i][0])  best_accuracy = acc_param_list[best_acc_index][0]  best_params = acc_param_list[best_acc_index][1]  print("================================================")print("Best accuracy:", best_accuracy)  print("Best params:", best_params)  print()for i, (acc, params) in enumerate(acc_param_list):  print(f"Trial {i+1}: valid acc {acc}, params {params}")return best_net  # 这是从最佳模型加载的网络"""以上为模型训练以及参数调优函数"""#保存训练得到的模型权重文件def save_model(self,model_path,model_path_zheng,best_net):torch.save(best_net.state_dict(), model_path)  #只保存模型的参数torch.save(best_net, model_path_zheng)  #保存整个模型print(f"Model saved to {model_path}")

2.3. 可视化结果

包括查看模型在验证集上的每一类的准确率、分类报告、混淆矩阵、AUC-ROC曲线


class ViewResult:"""查看训练效果:1. 查看每一类在验证集上的准确率2. 查看precision,recall和f1-score(即分类报告)3. 查看混淆矩阵4. 查看AUC-ROC曲线"""def __init__(self, best_net, valid_iter, devices, classes):self.net = best_netself.valid_iter = valid_iterself.devices = devicesself.classes = classesself.num_classes = len(classes)def view_result(self):print(self.num_classes)class_correct = [0.] * self.num_classesclass_total = [0.] * self.num_classesy_test, y_pred = [], []X_test = []with torch.no_grad():for images, labels in self.valid_iter:X_test.extend([_ for _ in images])outputs = self.net(images.to(self.devices[0]))_, predicted = torch.max(outputs, 1)predicted = predicted.cpu()c = (predicted == labels).squeeze()for i, label in enumerate(labels):class_correct[label] += c[i].item()class_total[label] += 1y_pred.extend(predicted.numpy())y_test.extend(labels.cpu().numpy())for i in range(self.num_classes):if class_total[i] != 0:accuracy = 100 * class_correct[i] / class_total[i]else:accuracy = 0print(f"Accuracy of {self.classes[i]:5s}: {accuracy:2.0f}%")#分类报告try:cr = classification_report(y_test, y_pred, target_names=list(self.classes.values()))print(cr)except Exception as e:print("An error occurred while generating the classification report:", str(e))#混淆矩阵cm = confusion_matrix(y_test, y_pred)labels = pd.DataFrame(cm).applymap(lambda v: f"{v}" if v != 0 else f"")plt.figure(figsize=(25, 20))sns.heatmap(cm, annot=labels, fmt='s', xticklabels=self.classes.items(), yticklabels=self.classes.items(), linewidths=0.1)plt.show()def evaluate_roc(self, num_classes):self.net.eval()y_true = []y_score = []for X, y in self.valid_iter:X, y = X.to(self.devices[0]), y.to(self.devices[0])y_true.append(y.cpu().numpy())y_score.append(self.net(X).detach().cpu().numpy())y_true = np.concatenate(y_true)y_score = np.concatenate(y_score)fpr = dict()tpr = dict()roc_auc = dict()for i in range(num_classes):y_true_i = np.where(y_true == i, 1, 0)y_score_i = y_score[:, i]fpr[i], tpr[i], _ = roc_curve(y_true_i, y_score_i)roc_auc[i] = auc(fpr[i], tpr[i])plt.figure(figsize=(15, 15))colors = list(mcolors.CSS4_COLORS.values())colors = colors[:num_classes]for i in range(num_classes):plt.plot(fpr[i], tpr[i], color=colors[i], lw=2, label=f'Class {i}, AUC = {roc_auc[i]:.2f}')plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')plt.xlim([0.0, 1.0])plt.ylim([0.0, 1.05])plt.xlabel('False Positive Rate')plt.ylabel('True Positive Rate')plt.title('Receiver Operating Characteristic for Multi-class Classification')plt.legend(loc="lower right")plt.show()

2.4. 类别函数

调用之前所定义的类,实现不同分类类别的模型的训练

        
def leibie_class(leibie,num_classes,batch_size,valid_ratio,param_grid,model_path,target_dir,model_name,model_leibie,train_folder,test_folder,model_path_zheng):"""leibie: #填写是几分类的标签文件,如要进行十分类,则填写labels.csv;要进行五分类,则填写labels_5.csv;要进行二分类,填写labels_2.csv.num_classes : #填写与leibie对应的类别数字,如要进行十分类,填写数字10,以此类推。batch_size : #批量大小,即每次处理的样本数量。valid_ratio : #验证集所占比例,如为0.3,则代表验证集占比为30%;即验证集:训练集==3:7。以此类推param_grid : #定义要调整的参数范围,通过网格搜索,遍历出最佳模型,获取对应的参数。model_path : #最佳模型权重文件保存路径,如'/kaggle/working/model_xcy_shi_1.pth',可以更改'/model_xcy_shi_1.pth',前面的‘/kaggle/working/’不能改变。target_dir : #整理后目标文件存放的目录,如‘/kaggle/working/my_directory_shi’,代表是按十分类整理的文件;‘/kaggle/working/my_directory_wu’则代表是按五分类整理的文件。以此类推。model_name : #加载模型的名字。例如:'resnet34'model_leibie : #加载模型所属类别函数。例如: 'get_resnet'train_folder : #原始训练集存放文件夹test_folder : #原始测试集存放文件夹model_path_zheng : #完整模型存放路径"""data_dir = "/kaggle/input/sanyeqing/"  #存放原始数据的目录image_classifier = MyImageClassifier(data_dir, target_dir, batch_size, valid_ratio,train_folder,test_folder) #图像分类训练模型类的实例化#调用类中的函数:image_classifier.reorg_san_data(leibie) #十分类(labels.csv为十分类,labels_5.csv为五分类......)valid_iter=image_classifier.shuju_zq_jz(batch_size)[1]  #数据增强处理函数,class_to_idx=image_classifier.classes() #返回分类标签与索引对应函数print(class_to_idx)best_net = image_classifier.train_parameter_tuning(param_grid,num_classes,batch_size,model_name,model_leibie) #十分类(10为十分类,5则为五分类......)#     print("===================================================")
#     print("最终的保存模型:")
#     image_classifier.save_model(model_path,model_path_zheng,best_net)
#     print();print()#训练结果可视化:
#     result_viewer = ViewResult(best_net, valid_iter, devices=d2l.try_all_gpus(), classes=class_to_idx)
#     result_viewer.view_result()
#     result_viewer.evaluate_roc(num_classes)# 使用示例
if __name__ == '__main__':# 定义要调整的参数范围param_grid = {'num_epochs': [201],'lr': [1e-4],'wd': [1e-4],'lr_period': [2],'lr_decay': [1]}print("这是省份分类:")leibie_class("labels_hun_finally_2.csv",num_classes=3,batch_size=128,valid_ratio=0.2,param_grid=param_grid,
#                  model_path='/kaggle/working/model_wht_wu.pth',model_path=None,target_dir='/kaggle/working/my_directory_er',model_name='mobilenet_v3_large',model_leibie='get_mobilenet',train_folder = 'train_hun_finally',test_folder='test_hun_finally',model_path_zheng=None) #省份分类

总结

主要是运用迁移学习的方法,将预训练模型在自定义的数据集上进行训练。

2024/6/12

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/43895.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

详解TCP和UDP通信协议

目录 OSI的七层模型的主要功能 tcp是什么 TCP三次握手 为什么需要三次握手&#xff0c;两次握手不行吗 TCP四次挥手 挥手会什么需要四次 什么是TCP粘包问题&#xff1f;发生的原因 原因 解决方案 UDP是什么 TCP和UDP的区别 网络层常见协议 利用socket进行tcp传输代…

【js面试题】深入理解DOM操作:创建、查询、更新、添加和删除节点

面试题&#xff1a;DOM常见的操作有哪些 引言&#xff1a; 在前端开发中&#xff0c;DOM&#xff08;文档对象模型&#xff09;操作是日常工作中不可或缺的一部分。DOM提供了一种以编程方式访问和更新文档内容、结构和样式的接口。 任何html或 xml 文档都可以用dom表示为一个由…

KIVY Button¶

Button — Kivy 2.3.0 documentation Button Jump to API ⇓ Module: kivy.uix.button Added in 1.0.0 The Button is a Label with associated actions that are triggered when the button is pressed (or released after a click/touch). To configure the button, the s…

【论文速读】| 用于安全漏洞防范的人工智能技术

本次分享论文&#xff1a;Artificial Intelligence Techniques for Security Vulnerability Prevention 基本信息 原文作者&#xff1a;Steve Kommrusch 作者单位&#xff1a;Colorado State University, Department of Computer Science, Fort Collins, CO, 80525 USA 关键…

ISO/OSI七层模型

ISO:国际标准化/ OSI:开放系统互联 七层协议必背图 1.注意事项&#xff1a; 1.上三层是为用户服务的&#xff0c;下四层负责实际数据传输。 2.下四层的传输单位&#xff1a; 传输层&#xff1b; 数据段&#xff08;报文&#xff09; 网络层&#xff1a; 数据包&#xff08;报…

1Panel安装命令脚本大全,多Linux操作系统版本

1Panel安装命令脚本大全&#xff0c;包括RedHat、CentOS、Ubuntu、Debian和openEuler等linux操作系统&#xff0c;码笔记整理1Panel安装命令脚本清单&#xff1a; RedHat/CentOS安装命令&#xff1a; curl -sSL https://resource.fit2cloud.com/1panel/package/quick_start.sh…

【Swoole 的生命周期,文件描述符,协程数量,以及默认值】

目录 Swoole 的生命周期 Swoole 文件描述符&#xff08;FD&#xff09;缓存 Swoole设置协程的数量 Swoole 默认值 Swoole 是一个基于 PHP 的高性能网络通信引擎&#xff0c;它采用 C 编写&#xff0c;提供了协程和高性能的网络编程支持。Swoole 支持多种网络服务器和客户端…

python库 - modelscope

ModelScope 是一个集成的机器学习模型库&#xff0c;旨在简化机器学习模型的使用流程&#xff0c;提供多种预训练模型&#xff0c;涵盖计算机视觉、自然语言处理、语音识别等多个领域。用户可以轻松访问、使用和分享各种预训练的机器学习模型&#xff0c;无需从头开始训练模型&…

Vue项目openlayers中使用jsts处理wkt和geojson的交集-(geojson来源zpi解析)

Vue项目openlayers中使用jsts处理wkt和geojson的交集-(geojson来源zpi解析) 读取压缩包中的shape看上一篇笔记&#xff1a;Vue项目读取zip中的ShapeFile文件&#xff0c;并解析为GeoJson openlayers使用jsts官方示例&#xff1a;https://openlayers.org/en/latest/examples/j…

框选table单元格,高亮展示

td单元格内&#xff0c;有未知层dom结构 <style>.highlight {background-color: yellow;} </style> <table id"myTable"><colgroup><col style"background-color: lightblue;"><col style"background-color: light…

#pragma 指令

#pragma 指令作用是设定编译器的状态或者是指示编译器完成一些特定的动作 message 参数能够在编译信息输出窗口中输出相应的信息 #pragma message(“消息文本”) code_seg参数能够设置程序中函数代码存放的代码段&#xff0c;当我们开发驱动程序的时候就会使用到它 #pragma…

科技创新引领水利行业升级:深入分析智慧水利解决方案的核心价值,展望其在未来水资源管理中的重要地位与作用

目录 引言 一、智慧水利的概念与内涵 二、智慧水利解决方案的核心价值 1. 精准监测与预警 2. 优化资源配置 3. 智能运维管理 4. 公众参与与决策支持 三、智慧水利在未来水资源管理中的重要地位与作用 1. 推动水利行业转型升级 2. 保障国家水安全 3. 促进生态文明建设…

下降npm版本

Node版本与NPM版本对应关系 Node版本与NPM版本对应关系_node对应npm版本-CSDN博客 要降低npm的版本&#xff0c;可以按照以下步骤进行操作 1.首先&#xff0c;打开终端或命令提示符窗口。 2.输入以下命令来检査当前安装的npm版本: npm -v 3.如果你想要降低npm的版本&#xff…

vb.netcad二开自学笔记5:ActiveX链接CAD的.net写法

一、必不可少的对象引用 使用activex需要在项目属性中勾选以下两个引用&#xff0c;若找不到&#xff0c;则浏览定位直接添加下面两个文件&#xff0c;可以看到位于cad的安装路径下&#xff0c;图中的3个mgd.dll也可以勾选。 C:\Program Files\Autodesk\AutoCAD 2024\Autodes…

实战 | YOLOv8使用TensorRT加速推理教程(步骤 + 代码)

导 读 本文主要介绍如何使用TensorRT加速YOLOv8模型推理的详细步骤与演示。 YOLOv8推理加速的方法有哪些? YOLOv8模型推理加速可以通过多种技术和方法实现,下面是一些主要的策略: 1. 模型结构优化 网络剪枝:移除模型中不重要的神经元或连接,减少模型复杂度。 模型精…

中文大模型基准测评2024上半年报告

中文大模型基准测评2024上半年报告 原创 SuperCLUE CLUE中文语言理解测评基准 2024年07月09日 18:09 浙江 SuperCLUE团队 2024/07 背景 自2023年以来&#xff0c;AI大模型在全球范围内掀起了有史以来规模最大的人工智能浪潮。进入2024年&#xff0c;全球大模型竞争态势日益加…

Obsidian 文档编辑器

Obsidian是一款功能强大的笔记软件 Download - Obsidian

降Compose十八掌之『见龙在田』| Modifier

公众号「稀有猿诉」 原文链接 降Compose十八掌之『见龙在田』| Modifier 通过前面的文章我们学会了如何使用元素来构建和填充我们的UI页面&#xff0c;但这只完成了一半&#xff0c;元素还需要装饰&#xff0c;以及进行动画和事件响应&#xff0c;这才能生成完整的UI。这…

2.5章节python中布尔类型

在Python中&#xff0c;布尔类型&#xff08;Boolean type&#xff09;用于表示真&#xff08;True&#xff09;或假&#xff08;False&#xff09;的值。这是编程中非常基础且重要的一个概念&#xff0c;因为它允许程序进行条件判断&#xff0c;从而根据条件执行不同的代码块。…

智慧校园行政办公-红头文件功能概述

在智慧校园的行政办公系统中&#xff0c;红头文件的管理功能是一项重要的组成部分&#xff0c;它极大地提升了文件处理的效率与规范性。该功能围绕文件的创建、审批、归档等关键环节&#xff0c;进行了全面的数字化改造。 首先&#xff0c;系统内置了多种标准化的红头文件模板&…