逻辑回归不是回归吗?那为什么叫回归?

RNN

    • 逻辑回归不是回归吗?那为什么叫回归?
      • 逻辑回归的基本原理
        • 逻辑函数(Sigmoid函数)
        • 二元分类
      • 为什么叫做“回归”?
      • 逻辑回归的应用场景
      • 总结

逻辑回归不是回归吗?那为什么叫回归?

逻辑回归(Logistic Regression)是机器学习和统计学中常用的算法,尽管其名字中包含“回归”,但它主要用于分类任务。本文将详细解释逻辑回归的基本原理、为何它叫做“回归”、以及其应用场景,帮助读者更好地理解这一重要算法。

逻辑回归的基本原理

逻辑回归的目标是根据输入变量(特征)预测一个二元输出(0或1)。为了实现这一点,逻辑回归模型使用了一个**逻辑函数(sigmoid函数)**将线性回归的输出转换为一个概率值。

逻辑函数(Sigmoid函数)

逻辑回归模型的核心是逻辑函数(也称为sigmoid函数),其公式为:

σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1

其中, x x x 是输入的线性组合,即:

x = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β n x n x = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n x=β0+β1x1+β2x2++βnxn

逻辑函数将输入的线性组合转换为一个在0到1之间的概率值。

二元分类

逻辑回归通过逻辑函数将输入特征映射到一个概率值,然后通过设定一个阈值(通常为0.5)进行二元分类:

  • 如果概率值大于或等于0.5,则预测类别为1。
  • 如果概率值小于0.5,则预测类别为0。

为什么叫做“回归”?

尽管逻辑回归用于分类任务,它仍被称为“回归”,原因如下:

  1. 线性组合:逻辑回归在模型结构上与线性回归类似,都是对输入特征进行线性组合,即:

x = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β n x n x = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n x=β0+β1x1+β2x2++βnxn

  1. 参数估计:逻辑回归的参数((\beta))估计过程与线性回归类似,通常使用最大似然估计法(Maximum Likelihood Estimation,MLE)来估计模型参数。

  2. 统计背景:逻辑回归最早来源于统计学中的二项回归模型,它扩展了线性回归,使其可以处理分类任务。

逻辑回归的应用场景

逻辑回归广泛应用于各种分类任务中,包括但不限于:

  • 医疗诊断:根据病人的症状和病历预测是否患有某种疾病。
  • 市场营销:根据客户行为预测其是否会购买某产品。
  • 信用评分:根据个人信用记录预测其是否会违约。
  • 二元分类问题:几乎所有的二元分类问题都可以应用逻辑回归来解决。

总结

逻辑回归虽然名字中带有“回归”,但它主要用于分类任务。其名称来源于线性回归的数学基础和统计背景。通过使用逻辑函数(sigmoid函数),逻辑回归将线性组合的结果转换为概率值,从而实现分类任务。

重点内容

  • 逻辑回归用于分类任务,而非回归任务
  • 逻辑回归与线性回归在模型结构和参数估计上有相似之处
  • 逻辑函数(sigmoid函数)是逻辑回归的核心,将线性组合转换为概率值

通过本文的详细解释,希望读者能更好地理解逻辑回归的基本原理、其名称的来源以及应用场景。这将有助于在实际项目中正确地选择和应用逻辑回归模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/43839.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python大数据分析——决策树和随机森林

Python大数据分析——决策树和随机森林 决策树决策树节点字段的选择信息熵条件熵信息增益信息增益率 基尼指数条件基尼指数基尼指数增益 决策树函数 随机森林函数 决策树 图中的决策树呈现自顶向下的生长过程,深色的椭圆表示树的根节点;浅色的椭圆表示树…

Java项目:基于SSM框架实现的农家乐信息管理平台含前后台【ssm+B/S架构+源码+数据库+答辩PPT+开题报告+毕业论文】

一、项目简介 本项目是一套基于SSM框架实现的农家乐信息管理平台 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、功…

招投标信息采集系统:让您的企业始终站在行业前沿

一、为何招投标信息如此关键? 在经济全球化的大背景下,招投标活动日益频繁,成为企业获取项目、拓展市场的主流方式之一。招投标信息采集,作为企业战略决策的前置环节,其重要性不言而喻。它不仅关乎企业能否第一时间发…

WPF 初识依赖属性

依赖属性的意义和作用 核心模块内存共享,节省空间数据绑定、样式、模板、动画。。。。如果没有依赖属性,这个框架就是一个控件框架 相当于Winform 依赖属性的基本定义 基本过程:声明、注册、包装 在需要写依赖属性的类中,继承…

快速将一个网址打包成一个exe可执行文件

一、电脑需要node环境 如果没有下面有安装教程: node.js安装及环境配置超详细教程【Windows系统安装包方式】 https://blog.csdn.net/weixin_44893902/article/details/121788104 我的版本是v16.13.1 二、安装nativefier 这是一个GitHub上的开源项目&#xff1a…

C 语言函数

1.0 函数的创建和使用 在C语言中,函数是一种封装了特定功能的代码块,可以被程序中的其他部分调用。函数可以接受输入参数,并且可以返回一个值。定义一个函数的基本语法如下 #define _CRT_SECURE_NO_WARNINGS #include "stdio.h" …

numpy、ffmpeg都在cpu上面跑

ffmpeg: ffmpeg不支持在GPU上运行。ffmpeg是一个用于处理多媒体数据的工具,它主要在CPU上运行。虽然某些特定的ffmpeg功能(如某些视频编解码器)可以利用GPU进行硬件加速,但这需要特定的硬件和驱动支持,并且并非所有操…

阿里云人工智能平台PAI部署开源大模型chatglm3之失败记录--update:最后成功了!

想学习怎么部署大模型,跟着网上的帖子部署了一个星期,然而没有成功。失败的经历也是经历,记在这里。 我一共创建了3个实例来部署chatglm3,每个实例都是基于V100创建的(当时没有A10可选了),其显…

算法工程师第六天(● 454.四数相加II ● 383. 赎金信 ● 15. 三数之和 ● 18. 四数之和 ● 总结 )

参考文献 代码随想录 一、四数相加 II 给你四个整数数组 nums1、nums2、nums3 和 nums4 &#xff0c;数组长度都是 n &#xff0c;请你计算有多少个元组 (i, j, k, l) 能满足&#xff1a; 0 < i, j, k, l < nnums1[i] nums2[j] nums3[k] nums4[l] 0 示例 1&#…

x86芯片定制,Ethercat芯片定制,IP服务,适用于运动控制,工业总线等软硬一体机

x86芯片定制&#xff0c;Ethercat芯片定制 X86平台 我们的研发工程师已经积累了非常丰富的主板、整机设计经验&#xff0c;对接您的产品规格场景需求&#xff0c;快速交付样机&#xff0c;包含主板、BOX整机、平板电脑、CPCI等形态产品。降本、长生命周期、快速交付、及时响应…

C# 如何防止反编译?C#程序加密混淆保护方法大全

在C#开发中&#xff0c;由于.NET程序集&#xff08;assemblies&#xff09;是基于中间语言&#xff08;Intermediate Language, IL&#xff09;编译的&#xff0c;这些程序集可以被反编译回接近原始源代码的形式。为了保护代码不被轻易反编译&#xff0c;开发者可以采取以下几种…

springsecurity(学习自用)

springsecurity 学习资源&#xff1a; https://blog.csdn.net/qq_45525848/article/details/131142179 springbootspring security 认证&#xff1a; 判断用户是否是系统合法用户过程授权: 判断系统内用户可以访问或具有访问那些资源权限过程 创建一个springboot项目 如果只…

IEC62056标准体系简介-2.IEC62056标准体系及对象标识系统(OBIS)

1. IEC 62056标准体系 IEC 62056标准体系目前共包括六部分&#xff0c;见图1&#xff1a; 第61部分&#xff1a;对象标识系统第62部分&#xff1a;接口类第53部分&#xff1a;COSEM应用层第46部分&#xff1a;使用HDLC&#xff08;High Level Data Link Control&#xff09;协…

Linux多进程和多线程(八)多线程

多线程 线程定义线程与进程线程资源 线程相关命令 pidstat 命令 top 命令ps 命令常见的并发方案 1. 多进程模式2. 多线程模式 创建线程 1. pthread_create() 示例:创建一个线程 2. pthread_exit() 退出线程3. pthread_join() 等待线程结束 示例: 线程分离 创建多个线程 示例 1:…

前端面试题35(在iOS和Android平台上,实现WebSocket协议有哪些常见的库或框架?)

在iOS和Android平台上&#xff0c;实现WebSocket协议有许多成熟且被广泛使用的库和框架。下面是一些推荐的选项&#xff1a; iOS 平台 SocketRocket 简介&#xff1a;这是由Facebook开源的库&#xff0c;专门为iOS和Mac OS X设计&#xff0c;提供WebSocket连接的功能。它基于S…

Blender新手入门笔记收容所(一)

基础篇 基础操作 视角的控制 控制观察视角&#xff1a;鼠标中键平移视图&#xff1a;Shift鼠标中键缩放视图&#xff1a;滚动鼠标中键滚轮 选中物体后&#xff1a;移动物体快捷键G&#xff0c;移动后单击鼠标就会定下来。 进入移动状态后&#xff1a;按Y会沿着Y轴移动进入移动…

LY/T 3359-2023 耐化学腐蚀高压装饰层积板检测

耐化学腐蚀高压装饰层积板是指用酚醛树脂浸渍的层状植物纤维材料为基材&#xff0c;与涂布以丙烯酸树脂为主体的装饰纸的饰面层&#xff0c;在高温高压下层积压制而成的具有化学腐蚀功能的高压装饰层积板。 LY/T 3359-2023 耐化学腐蚀高压装饰层积板检测项目&#xff1a; 测试…

HW期间——应急响应

01HW中应急响应的流程 001应急响应所处位置&#xff08;应急处置组&#xff09; 监控研判组发现的一些安全时间提供给应急处置组&#xff0c;应急处置组通过上机取证把线索给到溯源反制组。但是溯源反制组可能已经没有了&#xff0c;有些单位有&#xff0c;有些单位取消了。有…

Python神经模型评估微分方程图算法

&#x1f3af;要点 &#x1f3af;神经网络映射关联图 | &#x1f3af;执行时间分析 | &#x1f3af;神经网络结构降维 | &#x1f3af;量化图结构边作用 | &#x1f3af;数学评估算法实现 &#x1f36a;语言内容分比 &#x1f347;Python随机梯度下降算法 随机梯度下降是梯度…

matlab仿真 通信信号和系统分析(下)

&#xff08;内容源自详解MATLAB&#xff0f;SIMULINK 通信系统建模与仿真 刘学勇编著第三章内容&#xff0c;有兴趣的读者请阅读原书&#xff09; 一、离散傅里叶变换 clear all n0:30;%信号的时间范围 xsin(0.2*n).*exp(-0.1*n); k0:30;%频率范围 N31; Wnkexp(-j*2*pi/N).…