B站对应视频:
Elasticsearch01-01.为什么学习elasticsearch_哔哩哔哩_bilibili
大多数日常项目,搜索肯定是访问频率最高的页面之一。目前搜索功能是基于数据库的模糊搜索来实现的,存在很多问题。
首先,查询效率较低。
由于数据库模糊查询不走索引,在数据量较大的时候,查询性能很差。
改为基于搜索引擎后速度会有显著提升。
需要注意的是,数据库模糊查询随着表数据量的增多,查询性能的下降会非常明显,而搜索引擎的性能则不会随着数据增多而下降太多。
其次,功能单一
数据库的模糊搜索功能单一,匹配条件非常苛刻,必须恰好包含用户搜索的关键字。而在搜索引擎中,用户输入出现个别错字,或者用拼音搜索、同义词搜索都能正确匹配到数据。
综上,在面临海量数据的搜索,或者有一些复杂搜索需求的时候,推荐使用专门的搜索引擎来实现搜索功能。
目前全球的搜索引擎技术排名如下:
排名第一的就是我们今天要学习的elasticsearch.
elasticsearch是一款非常强大的开源搜索引擎,支持的功能非常多,例如:
代码搜索
商品搜索
解决方案搜索
地图搜索
通过今天的学习大家要达成下列学习目标:
-
理解倒排索引原理
-
会使用IK分词器
-
理解索引库Mapping映射的属性含义
-
能创建索引库及映射
-
能实现文档的CRUD
1.初识elasticsearch
Elasticsearch的官方网站如下:
https://www.elastic.co/cn/elasticsearch/
本章我们一起来初步了解一下Elasticsearch的基本原理和一些基础概念。
1.1.认识和安装
Elasticsearch是由elastic公司开发的一套搜索引擎技术,它是elastic技术栈中的一部分。完整的技术栈包括:
-
Elasticsearch:用于数据存储、计算和搜索
-
Logstash/Beats:用于数据收集
-
Kibana:用于数据可视化
整套技术栈被称为ELK,经常用来做日志收集、系统监控和状态分析等等:
整套技术栈的核心就是用来存储、搜索、计算的Elasticsearch,因此我们接下来学习的核心也是Elasticsearch。
我们要安装的内容包含2部分:
-
elasticsearch:存储、搜索和运算
-
kibana:图形化展示
首先Elasticsearch不用多说,是提供核心的数据存储、搜索、分析功能的。
然后是Kibana,Elasticsearch对外提供的是Restful风格的API,任何操作都可以通过发送http请求来完成。不过http请求的方式、路径、还有请求参数的格式都有严格的规范。这些规范我们肯定记不住,因此我们要借助于Kibana这个服务。
Kibana是elastic公司提供的用于操作Elasticsearch的可视化控制台。它的功能非常强大,包括:
-
对Elasticsearch数据的搜索、展示
-
对Elasticsearch数据的统计、聚合,并形成图形化报表、图形
-
对Elasticsearch的集群状态监控
-
它还提供了一个开发控制台(DevTools),在其中对Elasticsearch的Restful的API接口提供了语法提示
1.1.1.安装elasticsearch
通过下面的Docker命令即可安装单机版本的elasticsearch:
docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network hm-net \-p 9200:9200 \-p 9300:9300 \elasticsearch:7.12.1
注意,这里我们采用的是elasticsearch的7.12.1版本,由于8以上版本的JavaAPI变化很大,在企业中应用并不广泛,企业中应用较多的还是8以下的版本。
如果拉取镜像困难,可以直接使用这个镜像tar包(所有资料在文章末尾可以一次性提取):
安装完成后,访问9200端口,即可看到响应的Elasticsearch服务的基本信息: