DSSM双塔特征交互

传统的DSSM双塔无法在早期进行user和item侧的特征交互,这在一定程度上降低了模型性能。我们想要对双塔模型进行细粒度的特征交互,同时又不失双塔模型离线建向量索引的解耦性。下面介绍两篇这方面的工作。

美团-Dual Augmented Two-tower

meituan

  • 在user和item的特征侧分别引入可学习的特征向量
  • 当label=1的时候,user的 a u a_u au去学习item正样本的输出表征,从而实现隐式特征交互;item侧亦如此

损失函数如下:
loss ⁡ u = 1 T ∑ ( u , v , y ) ∈ T [ y a u + ( 1 − y ) p v − p v ] 2 loss ⁡ v = 1 T ∑ ( u , v , y ) ∈ T [ y a v + ( 1 − y ) p u − p u ] 2 y ∈ { 0 , 1 } \begin{aligned} \operatorname{loss}_u & =\frac{1}{T} \sum_{(u, v, y) \in \mathcal{T}}\left[y \mathbf{a}_u+(1-y) \mathbf{p}_v-\mathbf{p}_v\right]^2 \\ \operatorname{loss}_v & =\frac{1}{T} \sum_{(u, v, y) \in \mathcal{T}}\left[y \mathrm{a}_v+(1-y) \mathrm{p}_u-\mathbf{p}_u\right]^2 \\ y &\in \{0,1\} \end{aligned} lossulossvy=T1(u,v,y)T[yau+(1y)pvpv]2=T1(u,v,y)T[yav+(1y)pupu]2{0,1}

  • p u p_u pu p v p_v pv 梯度冻结,不进行更新
缺点

这种方式引入的交叉特征实际是非常"粗粒度"和"高阶"的,即携带的信息仅仅是对方tower最后输出的表征,对方tower在编码这段表征时,也仅仅只利用了fake的emb和tower本身的输入特征的交互。

百度-I3 Retriever

RankNet

  • 在doc侧设计一个轻量的query生成模块,利用doc侧特征作为输入,去fake一个query侧表征,去重构出query侧的输入特征。当然需要注意的是,也仅仅是在正样本上执行重构loss
  • doc侧与生成的query进行特征交互
  • 交互完的doc侧与query侧对比学习

重构损失函数如下:
L r = − ∑ w i ∈ q y w i log ⁡ ( W R K ( p ) q ) \mathcal{L}_r=-\sum_{w_i \in \mathbf{q}} \mathbf{y}_{w_i} \log \left(\mathbf{W}^{R_{\mathbb{K}}}(\mathbf{p})_q\right) Lr=wiqywilog(WRK(p)q)

对比损失函数如下:
L c = − log ⁡ exp ⁡ ( S ( q , p + ) ) exp ⁡ ( S ( q , p + ) ) + ∑ p − ∈ N − exp ⁡ ( S ( q , p − ) ) , \mathcal{L}_c=-\log \frac{\exp \left(S\left(\mathbf{q}, \mathbf{p}_{+}\right)\right)}{\exp \left(S\left(\mathbf{q}, \mathbf{p}_{+}\right)\right)+\sum_{\mathbf{p}-\in \mathcal{N}_{-}} \exp \left(S\left(\mathbf{q}, \mathbf{p}_{-}\right)\right)}, Lc=logexp(S(q,p+))+pNexp(S(q,p))exp(S(q,p+)),


参考

  • CIKM2023 | 突破双塔: 生成式交互的向量化召回

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/43268.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1. CSS Grid 网格布局教程

CSS Grid 网格布局教程 一、概述 网格布局(Grid)是最强大的 CSS 布局方案。 它将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局。以前,只能通过复杂的 CSS 框架达到的效果,现在浏览器…

Scrapy crawl spider 停止工作

Scrapy是一个用于爬取网站数据的流行框架,有时爬虫可能会停止工作,这通常是由多种原因引起的。以下是一些常见问题及其解决方法: 1、问题背景 用户在使用 Scrapy 0.16.2 版本进行网络爬取时遇到问题,具体表现为爬虫在运行一段时间…

Android 开发中 C++ 和Java 日志调试

在 C 中添加堆栈日志 先在 Android.bp 中 添加 ‘libutilscallstack’ shared_libs:["liblog"," libutilscallstack"]在想要打印堆栈的代码中添加 #include <utils/CallStack.h> using android::CallStack;// 在函数中添加 int VisualizerLib_Crea…

生物素结合金纳米粒子(Bt@Au-NPs ) biotin-conjugated Au-NPs

一、定义与特点 定义&#xff1a;生物素结合金纳米粒子&#xff0c;简称BtAu-NPs或biotin-conjugated Au-NPs&#xff0c;是指通过特定的化学反应或物理方法将生物素修饰到金纳米粒子表面&#xff0c;形成稳定的纳米复合材料。 特点&#xff1a; 高稳定性&#xff1a;生物素的修…

【VUE基础】VUE3第七节—Vue Router路由基础

Vue Router 是 Vue 官方的客户端路由解决方案。 客户端路由的作用是在单页应用 (SPA) 中将浏览器的 URL 和用户看到的内容绑定起来。当用户在应用中浏览不同页面时&#xff0c;URL 会随之更新&#xff0c;但页面不需要从服务器重新加载。 Vue Router 基于 Vue 的组件系统构建&…

LabVIEW在半导体自动化测试中的应用

半导体制造的复杂性和精密度要求极高&#xff0c;每一个生产步骤都需要严格的控制和监测。自动化测试设备在半导体制造中起到了关键作用&#xff0c;通过精密测量和数据分析&#xff0c;确保产品质量和生产效率。本文介绍如何使用LabVIEW结合研华硬件&#xff0c;开发一个用于半…

C语言编程3:运算符,运算符的基本用法

C语言3&#x1f525;&#xff1a;运算符&#xff0c;运算符的基本用法 一、运算符&#x1f33f; &#x1f387;1.1 定义 运算符是指进行运算的动作&#xff0c;比如加法运算符"“&#xff0c;减法运算符”-" 算子是指参与运算的值&#xff0c;这个值可能是常数&a…

自动化测试高级控件交互方法:TouchAction、触屏操作、点按,双击,滑动,手势解锁!

在自动化测试领域中&#xff0c;TouchAction 是一种非常强大的工具&#xff0c;它允许我们模拟用户在设备屏幕上的各种触摸事件。这种模拟不仅限于简单的点击操作&#xff0c;还包括滑动、长按、多点触控等复杂的手势。 点按与双击 点按和双击是触屏设备上最基本的操作之一。…

使用 Qt 和 ECharts 进行数据可视化

文章目录 示例图表预览折线图散点图柱状图使用 Qt 和 ECharts 进行数据可视化一、准备工作1. 安装 Qt2. 准备 ECharts二、在 Qt 中使用 ECharts1. 创建 Qt 项目2. 配置项目文件3. 在 UI 中添加 WebEngineView4. 加载 ECharts三、创建折线图、散点图和柱状图1. 折线图2. 散点图3…

sizeof跟strlen的用法及差异

sizeof是一个操作符&#xff0c;不是函数&#xff1b; 而strlen是一个库函数&#xff1b; sizeof是计算所占内存空间的&#xff0c;不管你内容是什么&#xff0c;只要知道占多少内存&#xff0c; 而strlen是跟内容有关的&#xff0c;它是计算字符串长度的&#xff08;字符数…

java —— tomcat 部署项目

一、通过 war 包部署 1、将项目导出为 war 包&#xff1b; 2、将 war 包放置在 tomcat 目录下的 webapps 文件夹下&#xff0c;该 war 包稍时便自动解析为项目文件夹&#xff1b; 3、启动 tomcat 的 /bin 目录下的 startup.bat 文件&#xff0c;此时即可从浏览器访问项目首页…

【Linux】文件内容查看命令——cat,tac,more,less,head,tail,od

如果我们要查看一个文件的内容时&#xff0c;该如何是好&#xff1f; 这里有相当多有趣的命令可以来分享一下&#xff1a;最常使用的显示文件内容的命令可以说是cat与more及less了。 此外&#xff0c;如果我们要查看一个很大的文件&#xff08;好几百MB时)&#xff0c;但是我们…

使用PyTorch设计卷积神经网络(CNN)来处理遥感图像Indian Pines数据集

目录 使用PyTorch设计卷积神经网络&#xff08;CNN&#xff09;来处理遥感图像Indian Pines数据集&#xff0c;以下是设计和实现这些网络的步骤&#xff1a; 1.数据准备&#xff1a; 1.1 首先&#xff0c;需要加载Indian Pines数据集。 1.2 将数据集转换为PyTorch张量&#x…

LLM推理引擎怎么选?TensorRT vs vLLM vs LMDeploy vs MLC-LLM

LLM擅长文本生成应用程序&#xff0c;如聊天和代码完成模型&#xff0c;能够高度理解和流畅。但是它们的大尺寸也给推理带来了挑战。有很多个框架和包可以优化LLM推理和服务&#xff0c;所以在本文中我将整理一些常用的推理引擎并进行比较。 TensorRT-LLM TensorRT-LLM是NV发布…

imazing电脑怎么下载 imazing怎么下载软件 使用iMazing下载和卸载Apple设备上的应用程序

iMazing官方版是一款管理苹果设备的软件&#xff0c;是一款帮助用户管理 iOS手机的PC端应用程序&#xff0c;能力远超 iTunes 提供的终极 iOS 设备管理器。在iMazing官方版上与苹果设备连接后&#xff0c;可以轻松传输文件&#xff0c;浏览保存信息等&#xff0c;功能比iTunes更…

泛微开发修炼之旅--35关于基于页面扩展和自定义按钮实现与后端交互调用的方法

文章链接&#xff1a;35关于基于页面扩展和自定义按钮实现与后端交互调用的方法

vue3中使用 tilwindcss报错 Unknown at rule @tailwindcss

解决方法&#xff1a; vscode中安装插件 Tailwind CSS IntelliSense 在项目中的 .vscode中 settings.json添加 "files.associations": {"*.css": "tailwindcss"}

基于YOLOv9的脑肿瘤区域检测

数据集 脑肿瘤区域检测&#xff0c;我们直接采用kaggle公开数据集&#xff0c;Br35H 数据中已对医学图像中脑肿瘤位置进行标注 数据集我已经按照YOLO格式配置好&#xff0c;数据内容如下 数据集中共包含700张图像&#xff0c;其中训练集500张&#xff0c;验证集200张 模型训…

AI绘画:艺术与科技的交融,创新浪潮与无限可能

在科技日新月异的当下&#xff0c;AI 绘画作为人工智能领域的一颗璀璨新星&#xff0c;正以惊人的速度在国内崭露头角&#xff0c;引发了艺术与技术交融的全新变革。随着人工智能技术的飞速发展&#xff0c;AI绘画已成为艺术与科技交融的新宠。2024年&#xff0c;AI绘画行业在国…

Autogen智能体实战-Autogen框架介绍

文章目录 一&#xff0c;Autogen简介二&#xff0c;Autogen原理1&#xff0c;Autogen原理图解2&#xff0c;拆解Autogen是如何完成绘制特斯拉股票趋势图的 这篇文章介绍一个开源的Agent框架-微软的Autogen。 一&#xff0c;Autogen简介 官网:https://microsoft.github.io/aut…