Stable Diffusion图像的脸部细节控制——采样器全解析

文章目录

  • 艺术地掌控人物形象
  • 好易智算
    • 原因分析
        • 为什么在使用Stable Diffusion生成全身图像时,脸部细节往往不够精细?
    • 解决策略
  • 局部重绘
  • 采样器
  • 总结

艺术地掌控人物形象

在运用Stable Diffusion这一功能强大的AI绘图工具时,我们往往会发现自己对提示词的使用还不够充分。在这种情形下,我们应当如何调整自己的策略,以便更加精确、全面地塑造出理想的人物形象呢?
举例来说,假设我们输入的是:

a girl in dress walks down a country road,vision,front view,audience oriented,

在这里插入图片描述
图片效果总是不尽人意
在这里插入图片描述
我们批量四个之后,除去背对的图片,我们可以看到其余三个的面部非常的奇怪
在这里插入图片描述
该如何快速处理呢?

好易智算

首先,我们可以通过好易智算平台迅速启动。在好易智算的平台上,它整合了多个AI应用程序——应用即达,AI轻启。这样的便捷性使得访问和使用这些先进技术变得前所未有地简单快捷。在这里插入图片描述
我们这里选择Stable Diffusion
在这里插入图片描述
近期,好易智算平台7月9日上线推出了399包月,用户可在算力市场中自由选择心仪的算力资源,享受到前所未有的价格优惠。

在这里插入图片描述

原因分析

首先我们要了解脸部崩坏的原因

为什么在使用Stable Diffusion生成全身图像时,脸部细节往往不够精细?
  1. 问题一:图像分辨率和细节处理
    在生成全身图像的过程中,模型会将计算资源集中于整个身体的描绘,包括服装、姿势和背景等要素。脸部通常仅占整个图像的一小部分,相对地,分配给脸部细节处理的资源就显得有限。这导致在最终生成的全身图像中,脸部的细节可能不如半身图像那样清晰。
  2. 问题二:训练数据的偏差效应
    如果您的数据集中包含了大量高清的半身像而非全身像,Stable Diffusion模型可能会倾向于专注于处理这些半身像。由于全身像包含更多的图像元素和更高的维度,模型在绘制时需要投入更多的计算能力。因此,它在半身像的处理上可能会更有优势。
  3. 问题三:生成算法的局限性
    当前的生成算法在处理尺寸不同的对象时,可能存在一些限制。例如,脸部区域是一个复杂且细节丰富的部分,而当算法处理全身图像时,可能难以保持对脸部细节质量的关注。
  4. 问题四:计算资源的限制
    要生成一个特定尺寸的图像(如320x240像素),模型需要进行一系列运算,包括模板提取、特征表示、搜索和匹配等。这些都需要计算资源,并且在有限的资源下,对图像不同部分的优化可能会增加计算成本。因此,对于全身图像,可能对脸部细节质量有所优化,或者简化了处理流程。

解决策略

  1. 利用更高分辨率图像进行训练
    通过使用更高分辨率的图像来进行训练,模型可以学习更多细节,这对提升生成照片中脸部的细节是有益的。
    但是更高的分辨率会导致人物拉长畸形,大大降低了质量

  2. 使用更高的算力
    提升GPU算力是提高计算机在图形处理、科学计算、深度学习等高性能计算任务中性能的关键。GPU,即图形处理单元,是一种高度并行的处理器,专门设计用来快速处理和渲染图像。

在今天的数字时代,我们可以通过一个简单快捷、功能强大的平台来迅速启动我们的服务。这个平台就是“好易智算”。在这个集成了无数AI应用程序的平台上,只需选择想要的应用,无需部署便会被轻松启用。这种前所未有地便捷体验极大地降低了访问这些前沿技术的门槛,让用户能够轻松而高效地利用这些技术,从而极大提升了工作效率和生活质量。并且提供了极高的资源选择
在这里插入图片描述

  1. 在生成全身图像时采用引导技术
    在生成全身图像时,尝试应用引导技术(如注意力机制),这样可以让模型更加专注于脸部区域,从而提高对脸部细节的关注。

在这里插入图片描述

我们可以看到即使使用了prompt之后,Stable Diffusion似乎听不懂一样只是对面部加了一个渲染,但并没有达到预期的效果
在这里插入图片描述

局部重绘

在这里插入图片描述
我们可以直接点击这里到局部重绘,在选择重绘内容之后,如下:
在这里插入图片描述
提示词都不用变化,只需要把负面词加上即可

(worst quality, low quality:1.4),monochrome,zombie,bad_prompt_version2-neg,easynegative (1),(worst quality, low quality:1.4),(depth of field, blurry:1.2),(greyscale, monochrome:1.1),3D face,cropped,lowres,text,(nsfw:1.3),(worst quality:2),(low quality:2),(normal quality:2),normal quality,((grayscale)),skin spots,acnes,skin blemishes,age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(bad proportions:1.331),extra limbs,(disfigured:1.331),(missing arms:1.331),(extra legs:1.331),(fused fingers:1.61051),(too many fingers:1.61051),(unclear eyes:1.331),lowers,bad hands,missing fingers,extra digit,bad hands,missing fingers,(((extra arms and legs))),
  1. 调整参数设置
    通过增加迭代次数或采用不同的采样方法,可以提高生成图像的质量,其中包括脸部细节。
    我们借助一个简便快捷且功能完备的平台,迅速开启我们的各项服务。这便是“好易智算”平台。在这个集合了众多AI应用的平台,这些应用中还集成了丰富的采样器和采样方法,极大提升了生成高质量图片的能力。这种前所未有的便捷体验大幅降低了接触这些尖端技术的难度,使得用户能够轻而易举、高效地运用这些技术,进而显著提高了工作效率和生活品质。
    在这里插入图片描述
    这款产品提供即时可用的云计算服务,无需配置,无需等待,随时启动,即刻享受预设配置,真正实现即开即用的便捷体验。
    在这里插入图片描述

采样器

在探讨Stable Diffusion的核心技术中,采样器扮演着至关重要的角色。本文将深入分析几种主要的采样器,以及它们各自的特点和应用场景,为读者提供更全面的了解。
首先,我们来看Euler采样器。这是一个基础而简洁的工具,它采用欧拉方法来进行迭代操作。欧拉方法本质上是一种高效的数值积分技术,专门用于求解非线性常微分方程。当应用于图像生成时,Euler采样器通过迭代去噪,可以有效地去除图像中的噪声。尽管速度快,Euler采样器也可能导致一些图像细节受损,因为过度的去噪可能会丢失一些微妙的边缘信息。
接下来是Euler a采样器,作为Euler的改进版,它增加了额外的参数用于控制去噪过程。这些参数的引入使得用户能够在去噪过程中拥有更多的自主权,从而有望获得更高的图像质量。这种改进带来了一系列潜在的优势:如更平滑的采样体验、更精细的噪声控制以及更优的整体图像效果。
转向Heun采样器,它的设计理念源自Heun方法,这是一种结合了Euler和Midpoint方法的创新技术。Heun方法同样基于数值积分原理,专注于求解常微分方程,并在Stable Diffusion中用于迭代去噪过程。相较于Euler,Heun采样器展现出更加平滑细腻的采样过程,同时提供更为卓越的图像质量。
在这里插入图片描述

DPM2采样器则是一种基于物理模型的工具。它采用了“去噪扩散概率模型”(DPM)技术,这一模型能够在去噪过程中优化控制噪声水平,进而生成更高质量的图像。DPM2的强大之处在于它可以精确调整噪声水平,避免了传统去噪方法中常见的“过噪”问题。
DPM2 a是DPM2采样器的又一次重大升级,它继承了Euler a的特性,并引入了更多的参数来进一步控制去噪流程。这些新参数允许用户对去噪过程进行精细的控制,有助于提升最终图像的质量。
DPM fast是DPM系列的另一快速响应选项。它通过降低去噪迭代次数并简化过程的方式,牺牲了一定的图像质量以换取生成速度的提升。尽管如此,DPM fast仍然保留了许多吸引人的特点,包括快速的生成效率和更短的处理时间。
DPM adaptive是DPM2采样器的自适应变体。它具备动态调整采样策略的能力,能够根据图像的复杂度实时调整采样参数。这样做的目的是为了平衡高生成速度和高质量输出之间的关系,确保生成的图像既快又好。
Restart采样器是一种利用重启技术的新型采样器。当图像质量开始出现下降趋势时,Restart采样器会重新开始整个去噪过程,以恢复图像的原有质量,防止其进一步恶化。
在这里插入图片描述

DDIM采样器基于迭代去噪技术,使用“去噪扩散迭代模型”(DDIM)。这项技术能够生成非常高质量的图像,但由于它的迭代特性,生成速度相对较慢。
PLMS采样器是DDIM采样器的改良版,它采用了“预条件的Legendre多项式去噪”(PLMS)技术。这种方法不仅能提供更好的图像质量,还能在生成速度上略胜一筹,与DDIM形成鲜明对比。
UniPC采样器基于统一概率耦合,采用“统一概率耦合”技术实现高质量图像输出。UniPC虽然在图像质量方面表现出色,但其复杂性和迭代特性导致了较慢的生成速度。
LCM采样器则基于拉普拉斯耦合模型,运用“拉普拉斯耦合模型”技术。LCM同样能够产出非常高品质的图像,但由于其结构的复杂性及迭代特性,生成速度也相应受到影响。
DPM++ 2M采样器是DPM2的进一步改进版,它引入了许多额外的去噪步骤和参数,旨在提升图像质量。特别值得一提的是,DPM++ 2M在去噪概率模型方面做出了重要的更新。
DPM++ SDE采样器是DPM2的基于随机微分方程(SDE)的改进版本。SDE技术的引入为图像生成提供了更加稳定和高质的结果。
DPM++ 2M SDE采样器是DPM++ 2M与DPM++ SDE结合的产物。它融合了两种技术的优势,为用户带来了更佳的图像质量。
DPM++ 2M SDE Heun采样器是DPM++ 2M SDE的进一步升级,它使用Heun方法进行迭代,结合了去噪扩散概率模型和Heun方法的共同优点。
DPM++ 2S a采样器是DPM++ 2M的最新版本,它增加了额外参数来精细控制去噪过程。这些新增的控制参数允许用户在去噪过程中拥有更多选择,有望获得更加精细和高质量的图像。
最后,我们来看看DPM++ 3M SDE采样器。它是DPM++ 2M SDE采样器的第三代进化版,引入了更多的去噪步骤和参数以追求更高的图像质量。DPM++ 3M SDE的目标是在保持前两代产品优点的同时,进一步提升性能和图像质量,为用户提供更加流畅和精细的图像生成过程。
在这里插入图片描述

总结

在当今这个视觉至上的时代,无论是艺术创作、广告宣传还是社交媒体分享,高质量的图像都是吸引观众、传递信息的关键。通过上述介绍的解决策略和技术改进方法,我们不仅能够艺术地掌控人物形象,还能更好地运用Stable Diffusion采样器,这是图像生成领域的一大进步。
艺术地掌控人物形象,不仅需要我们有独到的审美眼光,还需要我们掌握相关的技术手段。从化妆造型、服饰搭配到光影效果、后期处理,每一个环节都至关重要。通过上述介绍,我们了解到如何通过细节的调整,让人物形象更加立体、生动。
在这里插入图片描述

而Stable Diffusion采样器的运用,则是图像生成技术的又一次飞跃。它通过算法模拟出自然、逼真的图像效果,大大提高了图像生成的质量和效率。通过上述介绍,我们了解到如何通过调整参数、优化算法,让Stable Diffusion采样器更好地为我们服务。
在这里插入图片描述

然而,无论是艺术地掌控人物形象,还是运用Stable Diffusion采样器,都离不开强大的算力支持。**好易智算平台**作为一个优秀的算力资源提供者,为我们的图像生成提供了强有力的保障。它不仅提供了高效的计算资源,还提供了便捷的操作界面和专业的技术支持,让我们的图像生成工作更加轻松、高效。

总的来说,通过上述介绍的解决策略和技术改进方法,我们不仅能够艺术地掌控人物形象,还能更好地运用Stable Diffusion采样器,让我们的图像生成工作更加高效、高质量。同时,好易智算平台此次399包月活动为用户带来了极大的实惠,7月9日上线让更多用户能够以优惠的价格轻松获取所需的算力资源,助力他们在各自领域取得更好的成果。

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42553.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ESP32 步进电机精准控制:打造高精度 DIY 写字机器人,实现流畅书写体验

摘要: 想让你的 ESP32 不再仅仅是控制灯光的工具吗? 本文将带你使用 ESP32 开发板、步进电机和简单的机械结构打造一个能够自动写字的机器人。我们将深入浅出地讲解硬件连接、软件代码以及控制逻辑,并提供完整的项目代码和电路图,即使是 Ardu…

在mac下 Vue2和Vue3并存 全局Vue2环境创建Vue3新项目(Vue cli2和Vue cli4)

全局安装vue2 npm install vue-cli -g自行在任意位置创建一个文件夹vue3,局部安装vue3,注意不要带-g npm install vue/cli安装完成后,进入目录,修改vue为vue3 找到vue3/node-moudles/.bin/vue,把vue改成vue3。 对环境变量进行配置…

linux修改内核实现禁止被ping(随手记)

概述 Linux默认允许被ping。其主要决定因素为: 内核参数防火墙(iptables/firewall) 以上的决定因素是与的关系,即需要均满足。 因此,修改linux禁被ping有以上两种方法可以实现。 修改内核文件使禁ping 1. 临时生…

Windows环境安装Redis和Redis Desktop Manager图文详解教程

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl Redis概述 Redis是一个开源的高性能键值对数据库,以其卓越的读写速度而著称,广泛用于数据库、缓存和消息代理。它主要将数据存储在内存中&#xff0…

C++初学者指南-5.标准库(第一部分)--迭代器

C初学者指南-5.标准库(第一部分)–迭代器 Iterators 文章目录 C初学者指南-5.标准库(第一部分)--迭代器 Iterators1.默认正向迭代器2.反向迭代器3.基于迭代器的循环4.示例:交换相邻的一对元素5.迭代器范围6.迭代器范围中的元素数量7. 总结:迭代器 指向某…

护网在即,知攻善防助力每一位安服仔~

前言 是不是已经有师傅进场了呢~ 是不是有安服🐒在值守呢~ 您是不是被网上眼花缭乱的常用应急响应工具而烦恼呢? 何以解忧?唯有知攻善防! 创作起源: 驻场、护网等,有的客户现场只允许用客户机器&…

Python网络爬虫:Scrapy框架的全面解析

Python网络爬虫:Scrapy框架的全面解析 一、引言 在当今互联网的时代,数据是最重要的资源之一。为了获取这些数据,我们经常需要编写网络爬虫来从各种网站上抓取信息。Python作为一种强大的编程语言,拥有许多用于网络爬虫的工具和库…

puppeteer 爬虫初探

1. puppeteer 和 puppeteer-core 安装 puppeteer 会默认下载一个最新版本的 chrome 浏览器; 安装 puppeteer-core ,不会安装 chrome, 若要程序打开浏览器运行时,需手动指定电脑系统安装的 chrome 浏览器路径; 2. puppeteer-core …

按键控制LED流水灯模式定时器时钟

目录 1.定时器 2. STC89C52定时器资源 3.定时器框图 4. 定时器工作模式 5.中断系统 1)介绍 2)流程图:​编辑 3)STC89C52中断资源 4)定时器和中断系统 5)定时器的相关寄存器 6.按键控制LED流水灯模…

一个最简单的comsol斜坡稳定性分析例子——详细步骤

一个最简单的comsol斜坡稳定性分析例子——详细步骤 标准模型例子—详细步骤 线弹性模型下的地应力平衡预应力与预应变、土壤塑性和安全系数求解的辅助扫描

七月记录上半

7.5 运行mysql脚本 mysql -u root -p 数据库名 < 脚本名 7.6 使用screen在服务器后台长期运行一个程序&#xff1a; screen -S 窗口名&#xff1a;创建窗口 执行程序脚本 ctrlad&#xff1a;退出窗口 screen -ls &#xff1a;查看所有窗口 screen -r 窗口号 &#…

SpringBoot整合Easy-Es最佳实践

文章目录 1.1 部署ES和Kibana1.2 SpringBoot整合ES及配置1.2.1 引入相关依赖1.2.2 YML相关配置 1.3 索引CRUD1.3.1 索引托管自动挡1.3.1.1 配置实体模板1.3.1.2 配置启动模式 1.3.2 索引手动挡1.3.2.1 配置启动模式1.3.2.2 配置实体模板1.3.2.3 创建索引1.3.2.4 查询索引1.3.2.…

【INTEL(ALTERA)】为什么在设计迁移后,无法在Nios II BSP 编辑器中找到 DDR3 作为内存区域

目录 说明 解决方法 说明 将设计从 Quartus II 14.1 及以下迁移到 Quartus prime 17.0 时&#xff0c;DDR3 不再被识别为Nios II BSP 编辑器区域中的内存区域。 解决方法 迁移设计后&#xff0c;从 Qsys 设计中移除 DDR3 IP&#xff0c;然后将其再次添加。生成 Qsys 文件后…

车牌号查车辆信息-车牌号查车辆信息接口-汽车API接口

接口简介&#xff1a;输入车牌号&#xff0c;返回车辆相关信息&#xff08;无车主信息&#xff09;。初始登记日期、上险日期、保险到期时间、车架号、品牌这些数据会返回&#xff0c;其他数据不一定全部返回&#xff0c;,详细参数请查看返回接口文档 一般在新车上险或过户后第…

微信小程序消息通知(一次订阅)

在微信公众平台配置通知模版 通过wx.login获取code发送给后端 let that this // 登陆codewx.login({success: function (res) {if (res.code) {// 发送code到后端换取openid和session_keythat.setData({openCode: res.code})console.log(that.data.openCode, openCode);// 调…

数学系C++(六七)

目录 * &指针与地址 void指针 指针可以等于&#xff1a; const 指向常量的指针 const int *px 常指针 int * const px 指向常量的常指针const 类型标识符 * const 指针名 指针加减&#xff1a; 指针恒等式 函数指针【待续】 指针型函数&#xff1a; 指向函数的…

大数据之路 读书笔记 Day4 数据同步

回顾&#xff1a; Day 3 总结了无限客户端的日志采集 大数据之路 读书笔记 Day 3Day 2总结了浏览器端的日志采集 大数据之路 读书笔记 Day 2 数据同步 阿里数据体系中的数据同步&#xff0c;主要指的是在不同的数据存储系统之间进行数据的传输与更新&#xff0c;以保证数据的一…

【代码随想录_Day26】56 合并区间 738 单调递增的数字

Day26 OK&#xff0c;今日份的打卡&#xff01;第二十六天 以下是今日份的总结合并区间单调递增的数字 以下是今日份的总结 56 合并区间 738 单调递增的数字 今天的题目难度不低&#xff0c;尽量还是写一些简洁代码 ^ _ ^ 合并区间 思路&#xff1a; 先排序&#xff0c;按…

reactor和proactor模型

Reactor模型是非阻塞的同步IO模型。在主线程中也就是IO处理单元中&#xff0c;只负责监听文件描述符上是否有事件发生&#xff0c;有的话就立即将事件通知工作线程&#xff0c;将socket可读可写事件放入请求队列&#xff0c;交给工作线程处理。 总而言之就是主线程监听有事件发…

apk反编译修改教程系列-----修改apk 解除软件限制功能 实例操作步骤解析_3【二十二】

在前面的几期博文中有过解析去除apk中功能权限的反编译步骤。另外在以往博文中也列举了修改apk中选项功能权限的操作方法。今天以另外一款apk作为演示修改反编译去除软件功能限制的步骤。兴趣的友友可以参考其中的修改过程。 课程的目的是了解apk中各个文件的具体作用以及简单…