【2024_CUMCM】数据预处理、数据分析、数据可视化

目录

2023-c题-问题1

问题分析 

偏度

峰度

箱线图 

读图

重采样、降采样、升采样

重采样

降采样

升采样

解题代码


2023-c题-问题1

问题分析 

问题说白了就是探究品类和销售量这两个数据他们各自内在联系,根据题意,我们先进行

据预处理,按照以往的步骤是针对缺失值、重复值、异常值。我认为这道题应该是探究特殊

,需要思考到情境下的特殊情况和特殊数据,再进行处理。然后就可以开始数据分析,通

过函数引入数量、均值、最值、百分位数、偏度、峰度等描述统计量,并通过数据可视化

如热力图、箱线图、折线图、条形图、直方图更清晰探究其关联关系。 

偏度

偏度(Skewness)是用来度量随机变量概率分布的不对称性的统计量。它可以帮助我们了解数据分布的倾斜方向和程度

当偏度 < 0 时,概率分布图左偏;当偏度 = 0 时,表示数据相对均匀地分布在平均值两侧,不一定是绝对的对称分布;当偏度 > 0 时,概率分布图右偏。

峰度

峰度(Kurtosis)是用来度量随机变量概率分布的陡峭程度的统计量。它可以帮助我们了解数据分布的尖峭或平坦程度。峰度的计算公式为:

峰度的取值范围为 [1, +∞)。完全服从正态分布的数据的峰度值为 3。峰度值越大,概率分布图越高尖;峰度值越小,越矮胖

箱线图 

是显示一组数据分散情况资料的统计图。

读图

 从图中可以看出,南山区的房价最高,南山区、宝安区、福田区等的异常值很多,说明这些地区大部分房价高于均值。

重采样、降采样、升采样

相关参数 

重采样

重采样是时间序列频率转换的过程,可以理解为调整数据的时间分辨率。在Python的Pandas库中,`resample`函数用于执行重采样操作。

重采样可以将高频数据聚合到低频率(降采样),也可以将低频数据转换为高频率(升采样)

降采样

降采样是指从大量数据中选择一部分代表性样本的过程。

降采样是将高频数据转换为低频数据的过程。在降采样时,需要考虑`closedlabel`参数,它们分别决定了时间区间的闭合端点和聚合值的标签位置。

例如,如果想要将每天的数据聚合为每月的数据,可以使用resample('M')方法,其中'M'代表月度频率。

升采样

升采样是指增加数据集中样本数量的过程。

升采样是将低频数据转换为高频数据的过程。在升采样中,主要是通过数据插值来填补缺失的值

例如,如果想要将每年的数据转换为每月的数据,可以使用resample('M')方法,并配合适当的插值方法(如ffill)来填充缺失的月份数据。

解题代码

# %%
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np# %%
category = pd.read_excel('2023年数学建模C\附件1.xlsx')# %%
data= pd.read_excel('2023年数学建模C\附件2.xlsx')# %%
category# %%
merge_data=pd.merge(data,category,how='left',on='单品编码')# %%
merge_data.info()
merge_data# %%
# 删除某列中的某个值
merge_data=merge_data[merge_data['销售类型']!='退货']# %%
merge_data.drop(['扫码销售时间'],axis=1,inplace=True)# %%
merge_data.drop(['是否打折销售'],axis=1,inplace=True)# %%
merge_data.drop(['销售类型'],axis=1,inplace=True)# %%
merge_data# %%
# 透视表
pivot_table = merge_data.pivot_table(index='销售日期', columns='分类名称', values='销量(千克)', aggfunc='sum')
pivot_table# %%
pivot_table.describe()# %%
# 计算偏度
pivot_table.skew()# %%
# 计算峰度
pivot_table.kurt()# %%
df=pivot_table.resample('3M').sum()
df# %%
dff=df.corr()
dff# %%
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = Falseplt.rcParams['font.size'] = 12
plt.rcParams['xtick.labelsize']=12
plt.rcParams['ytick.labelsize']=12
plt.rcParams['axes.labelsize']=12
plt.rcParams['axes.titlesize']=12# %%
plt.figure(figsize=(10, 6))
# 热力图上显示系数
sns.heatmap(dff, cmap='coolwarm', square=True, annot=True)
# sns.heatmap(dff, cmap='coolwarm', fmt=".2f", linewidths=.5, square=True, cbar_kws={"shrink": .5})
plt.title('各分类名称之间的相关系数热力图')
plt.show()# %%
pivot_table2= merge_data.pivot_table(index='销售日期', columns='单品名称', values='销量(千克)', aggfunc='sum')
pivot_table2.describe()# %%
pivot_table2.info()# %%
pivot_table2# %%
df2=pivot_table2.resample('3M').sum()# %%
df_d=df2.describe()
df_d# %%
# 计算峰度与偏度
s1=df2.skew()
s2=df2.kurt()
s1
d1=dict(s1)
d2=dict(s2)# %%
df2_skew=pd.DataFrame(d1,index=['skew'],columns=s1.index)
df2_kurt=pd.DataFrame(d2,index=['kurt'],columns=s2.index)
df2_skew# %%
# 按行合并
df_d = pd.concat([df_d, df2_skew, df2_kurt], axis=0)
df_d# %%
# 选取前六列
dfff2 = df_d.iloc[:, :6]# %%
# 画出折线图
dfff2.plot(kind='line', figsize=(10,8 ))
plt.title('各单品名称销量(千克)')
plt.show()# %%
plt.figure(figsize=(10, 8))
sns.heatmap(dfff2, cmap='coolwarm', square=True, annot=True)
plt.title('各单品名称之间的相关系数热力图')
plt.show()# %%
df_dd=pivot_table2.describe()
df_dd# %%
label_list =df_dd.columns
# 从数据框中选择第一行数据,并使用sort_values()函数对其进行排序,使其按降序排列。
num_list1 =df_dd.iloc[0].sort_values(ascending=False)
plt.bar(label_list,num_list1)
plt.ylabel("销售数量")
plt.xticks(label_list)
plt.xlabel("单品名称")
plt.title("某公司2012-2013年前6个月出货量")
plt.legend()
plt.show()# %%
x = df_dd.iloc[0].sort_values(ascending=False)  				#数据集
plt.boxplot(x)    				#垂直显示箱线图
plt.show()						#显示该图# %%

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42505.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】 —— 编译和链接

【C语言】 —— 编译和链接 一、编译环境和运行环境二、翻译环境2.1、 预处理2.2、 编译&#xff08;1&#xff09;词法分析&#xff08;2&#xff09;语法分析&#xff08;3&#xff09;语义分析 2.3、 汇编2.4、链接 三、运行环境 一、编译环境和运行环境 平时我们说写 C语言…

C语言中32位浮点数的格式

以 GNU C为例&#xff0c;它遵循 IEEE 754-2008标准中制定的浮点表示规范。在该规范中定义了 5种不同大小的基础二进制浮点格式&#xff0c;包括&#xff1a;16位&#xff0c;32位&#xff0c;64位&#xff0c;128位&#xff0c;256位。其中&#xff0c;32位的格式被用作标准 C…

使用AOP思想实现开闭原则下的流水日志输出

主要实现思想&#xff1a; 通过实现Convert接口来抽取公共组件&#xff0c;获取想要的标准模型。 现在有两个订单场景&#xff0c;一个保存订单&#xff0c;一个为更新订单。构造如下的服务类&#xff1a; import org.springframework.stereotype.Service;Service public clas…

SHAP(SHapley Additive exPlanations)基于XGBoost模型的可解释机器学习

模型可解释性 这是一个关于错误解释机器学习模型的危险以及正确解释它的价值的故事。如果您发现诸如梯度提升机或随机森林之类的集成树模型的鲁棒准确性很有吸引力&#xff0c;但也需要解释它们&#xff0c;那么我希望您发现这些信息有用且有帮助。 试想一下&#xff0c;我们…

julia系列17: tsp问题代码整理

1. 常用库和基础函数 这里是优化版的函数&#xff1a; using TSPLIB,LKH,Distances,PyPlot MaxNum 10000 tspreadTSPLIB(:att48) dist [round.(Int,euclidean(tsp.nodes[i,:],tsp.nodes[j,:])) for i in 1:tsp.dimension,j in 1:tsp.dimension]; pos(tsp::TSP,t::Vector{In…

uniapp跨域问题解决

找到menifest文件&#xff0c;在文件的最后添加如下代码&#xff1a; // h5 解决跨域问题"h5":{"devServer": {"proxy": {"/adminapi": {"target": "https://www.demo.com", // 目标访问网址"changeOrigin…

httpd目录显示乱码问题

vim /etc/httpd/conf/httpd.conf 在<Directory “/var/www/html”>下添加&#xff1a; IndexOptions CharsetUTF-8重启httpd: systemctl restart httpd.service还是不好看&#xff0c;调整下显示宽度&#xff0c;还是这个位置&#xff1a; <Directory “/var/www/ht…

区块链论文速读A会-ISSTA 2023(2/2)如何检测DeFi协议中的价格操纵漏洞

Conference&#xff1a;ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA) CCF level&#xff1a;CCF A Categories&#xff1a;Software Engineering/System Software/Programming Languages Year&#xff1a;2023 第1~5篇区块链文章 请点击此…

C++面向对象的常见面试题目(一)

1. 面向对象的三大特征 &#xff08;1&#xff09;封装&#xff1a;隐藏对象的内部状态&#xff0c;只暴露必要的接口。 #include <iostream> #include <string>// 定义一个简单的类 Person class Person { private: // 私有成员&#xff0c;外部不可直接访问std…

华为机试HJ37统计每个月兔子的总数

华为机试HJ37统计每个月兔子的总数 题目&#xff1a; 想法&#xff1a; 上述题目实际是一个斐波那契数列&#xff0c;利用斐波那契数列对问题进行求解 input_number int(input())def fib(n):if n < 2:return 1else:n_1 1n_2 1count 2while count < n:n_1, n_2 n_…

【AI资讯】可以媲美GPT-SoVITS的低显存开源文本转语音模型Fish Speech

Fish Speech是一款由fishaudio开发的全新文本转语音工具&#xff0c;支持中英日三种语言&#xff0c;语音处理接近人类水平&#xff0c;使用Flash-Attn算法处理大规模数据&#xff0c;提供高效、准确、稳定的TTS体验。 Fish Audio

机器学习Day12:特征选择与稀疏学习

1.子集搜索与评价 相关特征&#xff1a;对当前学习任务有用的特征 无关特征&#xff1a;对当前学习任务没用的特征 特征选择&#xff1a;从给定的特征集合中选择出相关特征子集的过程 为什么要特征选择&#xff1f; 1.任务中经常碰到维数灾难 2.去除不相关的特征能降低学习的…

Git注释规范

主打一个有用 代码的提交规范参考如下&#xff1a; init:初始化项目feat:新功能&#xff08;feature&#xff09;fix:修补bugdocs:文档&#xff08;documentation&#xff09;style:格式&#xff08;不影响代码运行的变动&#xff09;refactor:重构&#xff08;即不是新增功能…

计算机网络之令牌环

1.令牌环工作原理 令牌环&#xff08;Token Ring&#xff09;是一种局域网&#xff08;LAN&#xff09;的通信协议&#xff0c;最初由IBM在1984年开发并标准化为IEEE 802.5标准。在令牌环网络中&#xff0c;所有的计算机或工作站被连接成一个逻辑或物理的环形拓扑结构。网络中…

排序(2)

我们在排序&#xff08;1&#xff09;中说到选择排序的代码&#xff1a; void SelectSort(int* a,int n) {int begin0,endn-1;int minibegin,maxbegin;for(int ibegin1;i<end;i){if(a[i]>a[max]){maxii;}if(a[i]<a[mini]){minii;}begin;--end;}Swap(&a[beign],&a…

SKF轴承故障频率查询

1&#xff0c;第一步&#xff1a;搜索轴承型号 skf官网 2&#xff0c;第二步&#xff1a;查询故障频率。 第三步&#xff1a;

尚品汇-(十四)

&#xff08;1&#xff09;提交git 商品后台管理到此已经完成&#xff0c;我们可以把项目提交到公共的环境&#xff0c;原来使用svn&#xff0c;现在使用git 首先在本地创建ssh key&#xff1b; 命令&#xff1a;ssh-keygen -t rsa -C "your_emailyouremail.com" I…

落日余晖映晚霞

落日余晖映晚霞&#xff0c;立于海滨&#xff0c;望夕阳余晖洒于波光粼粼之上&#xff0c;金光跳跃&#xff0c;若繁星闪烁&#xff0c;耀人心目。 海风轻拂&#xff0c;心境宁静&#xff0c;凡尘俗务皆于此刹那消散&#xff0c;思绪万干&#xff0c;或忆往昔点滴&#xff0c;或…

刷爆leetcode第十期

题目一 相同的树 给你两棵二叉树的根节点 p 和 q &#xff0c;编写一个函数来检验这两棵树是否相同。 如果两个树在结构上相同&#xff0c;并且节点具有相同的值&#xff0c;则认为它们是相同的。 首先我们要来判断下它们的根是否相等 根相等的话是否它们的左子树相等 是否…

在CMD中创建虚拟环境并在VSCode中使用和管理

1. 使用Conda创建虚拟环境 在CMD或Anaconda Prompt中执行以下代码以创建一个新的虚拟环境&#xff1a; conda create -n my_env python 3.8 这样会创建一个名为 my_env 的环境&#xff0c;并在Anaconda环境目录下生成一个相应的文件夹&#xff0c;包含该虚拟环境所需的所有…