深度学习原理与Pytorch实战

深度学习原理与Pytorch实战 第2版 强化学习人工智能神经网络书籍 python动手学深度学习框架书 TransformerBERT图神经网络:
技术讲解 在这里插入图片描述

编辑推荐

1.基于PyTorch新版本,涵盖深度学习基础知识和前沿技术,由浅入深,通俗易懂,适合初学人士的深度学习入门书3.实战案例丰富有趣,深度学习原理与具体的操作流程相结合4.新增了Transformer、BERT、图神经网络等热门技术的讲解5.配有源代码和导学,让学习更直观、更有效。另有付费□□课程。

内容简介

本书是一本系统介绍深度学习技术及开源框架PyTorch的入门书。书中通过大量案例介绍了PyTorch的使用方法、神经网络的搭建、常用神经网络(如卷积神经网络、循环神经网络)的实现,以及实用的深度学习技术,包括迁移学习、对抗生成学习、深度强化学习、图神经网络等。读者通过阅读本书,可以学会构造一个图像识别器,生成逼真的图画,让机器理解单词与文本,让机器作曲,教会机器玩游戏,还可以实现一个简单的机器翻译系统。第□版基于PyTorch 1.6.0,对全书代码进行了全面更新,同时增加了Transformer、BERT、图神经网络等热门深度学习技术的讲解,更具实用性和时效性。

目录

推荐序

前言

作者简介

□ □章 深度学习简介 1

1.1 深度学习与人工智能 1

1.□ 深度学□□历史渊源 □

1.□.1 从感知机到人工神经网络 3

1.□.□ 深度学□□□ 4

1.□.3 巨头之间的角逐 5

1.3 深度学□□影响因素 6

1.3.1 大数据 6

1.3.□ 深度网络架构 7

1.3.3 GPU 11

1.4 深度学习为什么如此成功 11

1.4.1 特征学习 11

1.4.□ 迁移学习 1□

1.5 小结 13

1.6 参考文献 14

第 □章 PyTorch简介 15

□.1 PyTorch安装 15

□.□ 初识PyTorch 15

□.□.1 与Python完美融合 16

□.□.□ 张量计算 16

□.□.3 动态计算图 □0

□.3 PyTorch实例:预测房价 □7

□.3.1 准备数据 □7

□.3.□ 设计模型 □8

□.3.3 训练 □9

□.3.4 预测 31

□.3.5 术语汇总 3□

□.4 小结 33

第3章 单车预测器——你的□ □个神经网络 35

3.1 共享单车的烦恼 35

3.□ 单车预测器1.0 37

3.□.1 人工神经网络简介 37

3.□.□ 人工神经元 38

3.□.3 两个隐含神经元 40

3.□.4 训练与运行 4□

3.□.5 失败的神经预测器 4□

3.□.6 过拟合 48

3.3 单车预测器□.0 49

3.3.1 数据的预处理过程 49

3.3.□ 构建神经网络 5□

3.3.3 测试神经网络 55

3.4 剖析神经网络Neu 57

3.5 小结 61

3.6 Q&A 61

第4章 机器也懂感情——中文情绪分类器 63

4.1 神经网络分类器 64

4.1.1 如何用神经网络做分类 64

4.1.□ 分类问题的损失函数 66

4.□ 词袋模型分类器 67

4.□.1 词袋模型简介 68

4.□.□ 搭建简单文本分类器 69

4.3 程序实现 70

4.3.1 数据处理 71

4.3.□ 文本数据向量化 73

4.3.3 划分数据集 74

4.3.4 建立神经网络 75

4.4 运行结果 78

4.5 剖析神经网络 79

4.6 小结 83

4.7 Q&A 83

第5章 手写数字识别器——认识卷积神经网络 84

5.1 什么是卷积神经网络 85

5.1.1 手写数字识别任务的卷积神经网络及运算过程 86

5.1.□ 卷积运算 87

5.1.3 池化运算 93

5.1.4 立体卷积核 94

5.1.5 超参数与参数 95

5.1.6 其他说明 96

5.□ 手写数字识别器 97

5.□.1 数据准备 97

5.□.□ 构建网络 100

5.□.3 运行模型 10□

5.□.4 测试模型 104

5.3 剖析卷积神经网络 105

5.3.1 □ □层卷积核与特征图 105

5.3.□ 第二层卷积核与特征图 106

5.3.3 卷积神经网络的健壮性实验 107

5.4 小结 109

5.5 Q&A 109

5.6 扩展阅读 109

第6章 手写数字加法机——迁移学习 110

6.1 什么是迁移学习 111

6.1.1 迁移学□□由来 111

6.1.□ 迁移学□□分类 11□

6.1.3 迁移学□□意义 11□

6.1.4 如何用神经网络实现迁移学习 113

6.□ 应用案例:迁移学习如何抗击贫困 115

6.□.1 背景介绍 115

6.□.□ 方法探寻 116

6.□.3 迁移学习方法 116

6.3 蚂蚁还是蜜蜂:迁移大型卷积神经网络 117

6.3.1 任务描述与初步尝试 118

6.3.□ ResNet与模型迁移 119

6.3.3 代码实现 1□0

6.3.4 结果分析 1□3

6.3.5 更多的模型与数据 1□5

6.4 手写数字加法机 1□5

6.4.1 网络架构 1□5

6.4.□ 代码实现 1□6

6.4.3 训练与测试 133

6.4.4 结果 135

6.4.5 大规模实验 135

6.5 小结 140

6.6 实践项目:迁移与效率 140

第7章 你自己的Prisma——图像风格迁移 14□

7.1 什么是风格迁移 14□

7.1.1 什么是风格 14□

7.1.□ 风格迁移的含义 143

7.□ 风格迁移技术发展简史 144

7.3 神经网络风格迁移 146

7.3.1 神经网络风格迁移的优势 146

7.3.□ 神经网络风格迁移的基本思想 147

7.3.3 卷积神经网络的选取 148

7.3.4 内容损失 149

7.3.5 风格损失 149

7.3.6 风格损失原理分析 150

7.3.7 损失函数与优化 153

7.4 神经网络风格迁移实战 153

7.4.1 准备工作 153

7.4.□ 建立风格迁移网络 155

7.4.3 风格迁移训练 158

7.5 小结 161

7.6 扩展阅读 161

第8章 人工智能造假术——图像生成与对抗学习 16□

8.1 反卷积与图像生成 165

8.1.1 卷积神经网络回顾 165

8.1.□ 反卷积运算 167

8.1.3 反池化过程 169

8.1.4 反卷积与分数步伐 170

8.1.5 输出图像尺寸公式 171

8.1.6 批正则化技术 17□

8.□ 图像生成实验1——□小均方误差模型 173

8.□.1 模型思路 173

8.□.□ 代码实现 174

8.□.3 运行结果 178

8.3 图像生成实验□——生成器—识别器模型 180

8.3.1 生成器—识别器模型的实现 180

8.3.□ 对抗样本 183

8.4 图像生成实验3——GAN 186

8.4.1 GAN的总体架构 187

8.4.□ 程序实现 188

8.4.3 结果展示 191

8.5 小结 193

8.6 Q&A 193

8.7 扩展阅读 194

第9章 词汇的星空——神经语言模型与Word□Vec 195

9.1 词向量技术介绍 195

9.1.1 初识词向量 195

9.1.□ 传统编码方式 196

9.□ NPLM:神经概率语言模型 197

9.□.1 NPLM的基本思想 198

9.□.□ NPLM的运作过程详解 198

9.□.3 读取NPLM中的词向量 □01

9.□.4 NPLM的编码实现 □0□

9.□.5 运行结果 □05

9.□.6 NPLM的总结与□限 □07

9.3 Word□Vec □07

9.3.1 CBOW模型和Skip-gram模型的结构 □07

9.3.□ 层次归一化指数函数 □08

9.3.3 负采样 □09

9.3.4 总结及分析 □10

9.4 Word□Vec的应用 □10

9.4.1 在自己的语料库上训练Word□Vec词向量 □10

9.4.□ 调用现成的词向量 □1□

9.4.3 女人 □人=皇后 国王 □14

9.4.4 使用向量的空间位置进行词对词翻译 □16

9.4.5 Word□Vec小结 □17

9.5 小结 □17

9.6 Q&A □18

□ □0章 深度网络 LSTM作曲机——序列生成模型 □□0

10.1 序列生成问题 □□0

10.□ RNN与LSTM □□1

10.□.1 RNN □□1

10.□.□ LSTM □□7

10.3 简单01序列的学习问题 □31

10.3.1 RNN的序列学习 □3□

10.3.□ LSTM的序列学习 □41

10.4 LSTM作曲机 □44

10.4.1 MIDI文件 □44

10.4.□ 数据准备 □45

10.4.3 模型结构 □45

10.4.4 代码实现 □46

10.5 小结 □54

10.6 Q&A □55

10.7 扩展阅读 □55

□ □1章 神经机器翻译机——端到端机器翻译 □56

11.1 机器翻译简介 □57

11.1.1 基于规则的机器翻译技术 □57

11.1.□ 统计机器翻译 □58

11.1.3 神经机器翻译 □58

11.1.4 关于Zero-shot翻译 □59

11.□ 编码—解码模型 □59

11.□.1 编码—解码模型总体架构 □60

11.□.□ 编码器 □60

11.□.3 解码器 □63

11.□.4 损失函数 □67

11.□.5 编码—解码模型归纳 □69

11.□.6 编码—解码模型的效果 □69

11.3 注意力机制 □70

11.3.1 神经机器翻译中的注意力 □71

11.3.□ 注意力网络 □71

11.4 更多改进 □75

11.4.1 GRU的结构 □75

11.4.□ 双向GRU的应用 □75

11.5 神经机器翻译机的编码实现 □76

11.5.1 神经网络的构建 □80

11.5.□ 神经网络的训练 □83

11.5.3 测试神经机器翻译机 □86

11.5.4 结果展示 □87

11.6 更多改进 □91

11.6.1 集束搜索算法 □91

11.6.□ BLEU:对翻译结果的评估方法 □93

11.6.3 对编码—解码模型的改进 □94

11.7 广义的翻译 □95

11.7.1 广义翻译机 □95

11.7.□ 广义翻译的应用场景 □95

11.8 Q&A □97

□ □□章 更强的机器翻译模型——Transformer □99

1□.1 Transformer概述 □99

1□.1.1 编码—解码模型回顾 300

1□.1.□ Transformer全景概览 300

1□.1.3 神奇的自注意力 301

1□.□ Atoken旅行记 304

1□.□.1 奇怪的序号牌 304

1□.□.□ 分身之门 305

1□.□.3 新朋友 306

1□.3 Transformer部件详解 306

1□.3.1 词嵌入与位置嵌入 306

1□.3.□ 自注意力模块计算详解 307

1□.3.3 自注意力层的矩阵计算 309

1□.3.4 残差连接与层归一化 310

1□.3.5 逐点计算的前向网络层 311

1□.3.6 解码器中的自注意力 311

1□.3.7 解码器的输出层 31□

1□.4 动手训练一个Transformer翻译模型 313

1□.4.1 翻译模型中输入单位的粒度 313

1□.4.□ 模型定义 313

1□.4.3 模型训练 318

1□.4.4 Transformer相关开源库 319

1□.5 小结 319

□ □3章 学习跨任务的语言知识——预训练语言模型 3□0

13.1 语言模型简要回顾 3□0

13.□ 预训练Transformer详解 3□□

13.□.1 深入了解GPT 3□3

13.□.□ 深入了解BERT 3□4

13.□.3 模型微调 3□6

13.□.4 模型表现 3□7

13.3 单句分类:BERT句子分类实战 3□8

13.4 后BERT时代 334

13.5 小结 334

□ □4章 人体姿态识别——图网络模型 335

14.1 图网络及图论基础 335

14.1.1 图的基本概念 335

14.1.□ 什么是图网络 337

14.1.3 图网络的基本任务和应用场景 338

14.□ 图卷积网络 338

14.□.1 GCN的工作原理 338

14.□.□ 打开GCN的黑箱 340

14.□.3 从社团划分任务来理解GCN 341

14.3 实战:使用GCN识别人体姿态 344

14.3.1 数据来源与预处理 345

14.3.□ 代码实现 346

14.4 小结 350

□ □5章 AI游戏高手——深度强化学习 351

15.1 强化学习简介 35□

15.1.1 强化学□□要素 35□

15.1.□ 强化学□□应用场景 353

15.1.3 强化学□□分类 354

15.□ 深度Q学习算法 355

15.□.1 Q学习算法 356

15.□.□ DQN算法 357

15.□.3 DQN在雅达利游戏上的表现 359

15.3 DQN玩Flappy Bird的PyTorch实现 361

15.3.1 Flappy Bird的PyGame实现 361

15.3.□ DQN的PyTorch实现 368

15.4 小结 377

15.5 通用人工智能还有多远 378

15.6 Q&A 379

15.7 扩展阅读 380

作者简介

集智俱乐部(Swarma Club)成立于□003年,是一个从事学术研究、享受科学乐趣的探索者团体,也是国内致力于研究人工智能、复杂系统的科学社区之一,倡导以平等开放的态度、科学实证的精神,进行跨学科的研究与交流,力图搭建一个中国的“没有围墙的□□□”。目前已出版书籍有《科学的□□:漫谈人工智能》《走近□050:注意力、互联网与人工智能》《NetLogo多主体建模入门》,译作有《深度思考:人工智能的终点与人类创造力的起点》。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42269.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

家里老人能操作的电视直播软件,目前能用的免费看直播的电视软件app,适合电视和手机使用!

2024年许多能看电视直播的软件都不能用了,家里的老人也不会手机投屏,平时什么娱乐都没有了,这真的太不方便了。 很多老人并不喜欢去买一个广电的机顶盒,或者花钱拉有线电视。 现在的电视大多数都是智能电视,所以许多电…

Redis基本命令源码解析-字符串命令

1. set 用于将kv设置到数据库中 2. mset 批量设置kv mset (msetnx) key1 value1 key2 value2 ... mset:msetCommand msetnx:msetnxCommand msetCommand和msetnxCommand都调用msetGenericCommand 2.1 msetGenericCommand 如果参数个数为偶数,则响应参数错误并返回 如果…

【项目日记(一)】梦幻笔耕-数据层实现

❣博主主页: 33的博客❣ ▶️文章专栏分类:项目日记◀️ 🚚我的代码仓库: 33的代码仓库🚚 🫵🫵🫵关注我带你了解更多项目内容 目录 1.前言2.后端模块3数据库设计4.mapper实现4.1UserInfoMapper4.2BlogMapper 5.总结 1.…

硬件开发笔记(二十四):贴片电容的类别、封装介绍,AD21导入贴片电容、原理图和封装库3D模型

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/140241817 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…

存储结构与管理磁盘

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 目录 一、一切从“/”开始 二、物理设备的命名规则 三、文件系统与数据资料 四、挂载硬件设备 五、添加硬盘设备 六、添加交换分区 七、磁盘容…

如何在 PostgreSQL 中实现数据的增量备份和恢复?

文章目录 一、增量备份的原理二、准备工作(一)环境配置(二)创建测试数据库和表(三)插入初始数据 三、全量备份四、基于时间点的增量备份(一)开启 WAL 归档(二&#xff09…

政策公告与提醒

自 2024 年 4 月 3 日起,您将至少有 30 天的时间来更新应用,使其符合下方所述的政策变更。 我们将推出“儿童安全标准”政策,规定社交应用和约会交友应用必须遵循特定标准,并在 Play 管理中心内以自行认证的形式证明合规后才能发布。 为了提高健康相关应用在 Google Play…

docker 重要且常用命令大全

本文将总结一些常见的重要的docker命令,以作备忘。后续如果有新的比较常用重要的也会更新进来。欢迎补充。 docker服务管理 首先我们要解释一下:systemctl和docker命令的不同 systemctl:是许多 Linux 发行版中默认的初始化系统和服务管理器。…

11.常见的Bean后置处理器

CommonAnnotationBeanPostProcessor (Resource PostConstructor PreDestroy) AutowiredAnnotationBeanPostProcessor (Autowired Value) GenericApplicationContext是一个干净的容器,它没有添加任何的PostProcessor处理器。 调用GenericApplicationContext.refre…

赛元单片机开发工具SOC_Programming_Tool_Enhance_V1.50 分享

下载地址: SOC_Programming_Tool_Enhance_V1.50(LIB0D30).rar: https://545c.com/f/45573183-1320016694-557ebd?p7526 (访问密码: 7526)

docker中实现多机redis主从集群

redis主从集群是每个使用redis的小伙伴都必需知道的,那如何在docker中快速配置呢?这篇来教你快速上手,跟着复制完全就能用!! 1. 前置准备 1.1 docker安装 以防有小伙伴没预先安装docker,这里提供安装步骤…

视频共享融合赋能平台LnyonCVS国标视频监控平台包含哪些功能

随着国内视频监控应用的迅猛发展,系统接入规模不断扩大。不同平台提供商的接入协议各不相同,导致终端制造商在终端维护时需要针对不同平台的软件版本提供不同的维护,资源造成了极大的浪费。 为响应国家对重特大事件通过视频监控集中调阅来掌…

QListWidget 缩略图IconMode示例

1、实现的效果如下&#xff1a; 2、实现代码 &#xff08;1&#xff09;头文件 #pragma once #include <QtWidgets/QMainWindow> #include "ui_QListViewDemo.h" enum ListDataType { ldtNone -1, ldtOne 0, ldtTwo 1, }; struct ListData…

解决后端限制导致前端配置跨域仍请求失败报504的问题

文章目录 问题一、通过配置跨域方式二、直接真实接口请求三、解决方式四、后端这样做的原因 总结 问题 前端项目设置跨域proxy处理&#xff0c;接口请求不会报跨域&#xff0c;但是接口请求报了504&#xff0c;这种情况如何处理呢&#xff0c;后端又为何要这么做&#xff0c;下…

汽车信息安全--欧盟汽车法规

目录 General regulation 信息安全法规 R155《网络安全及网络安全管理系统》解析 R156《软件升级与软件升级管理系统》解析 General regulation 欧洲的汽车行业受到一系列法律法规的约束&#xff0c;包括 各个方面包括&#xff1a; 1.安全要求&#xff1a;《通用安全条例&a…

机器学习筑基篇,​Ubuntu 24.04 快速安装 PyCharm IDE 工具,无需激活!

[ 知识是人生的灯塔&#xff0c;只有不断学习&#xff0c;才能照亮前行的道路 ] Ubuntu 24.04 快速安装 PyCharm IDE 工具 描述&#xff1a;虽然在之前我们安装了VScode&#xff0c;但是其对于使用Python来写大型项目以及各类配置还是比较复杂的&#xff0c;所以这里我们还是推…

使用RAID与LVM磁盘阵列技术

前言&#xff1a;本博客仅作记录学习使用&#xff0c;部分图片出自网络&#xff0c;如有侵犯您的权益&#xff0c;请联系删除 目录 一、RAID磁盘冗余阵列 1、部署磁盘整列 2、损坏磁盘阵列及修复 3、磁盘阵列备份盘 4、删除磁盘阵列 二、LVM逻辑卷管理器 致谢 一、RAID…

使用 PCA 可视化数据的分类能力

使用 PCA 探索数据分类的效果&#xff08;使用 Python 代码&#xff09; 「AI秘籍」系列课程&#xff1a; 人工智能应用数学基础人工智能Python基础人工智能基础核心知识人工智能BI核心知识人工智能CV核心知识 主成分分析 (PCA) 是数据科学家使用的绝佳工具。它可用于降低特征…

【QT】容器类控件

目录 概述 Group Box 核心属性 Tab Widget 核心属性 核心信号 核心方法 使用示例&#xff1a; 布局管理器 垂直布局 核心属性 使用示例&#xff1a; 水平布局 核⼼属性 (和 QVBoxLayout 属性是⼀致的) 网格布局 核心属性 使用示例&#xff1a; 示例&#x…

2024亚太杯中文赛数学建模B题word+PDF+代码

2024年第十四届亚太地区大学生数学建模竞赛&#xff08;中文赛项&#xff09;B题洪水灾害的数据分析与预测&#xff1a;建立指标相关性与多重共线性分析模型、洪水风险分层与预警评价模型、洪水发生概率的非线性预测优化模型&#xff0c;以及大规模样本预测与分布特征分析模型 …