【Mindspore进阶】-03.ShuffleNet实战

ShuffleNet图像分类

当前案例不支持在GPU设备上静态图模式运行,其他模式运行皆支持。

ShuffleNet网络介绍

ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。

了解ShuffleNet更多详细内容,详见论文ShuffleNet。

如下图所示,ShuffleNet在保持不低的准确率的前提下,将参数量几乎降低到了最小,因此其运算速度较快,单位参数量对模型准确率的贡献非常高。

shufflenet1

图片来源:Bianco S, Cadene R, Celona L, et al. Benchmark analysis of representative deep neural network architectures[J]. IEEE access, 2018, 6: 64270-64277.

模型架构

ShuffleNet最显著的特点在于对不同通道进行重排来解决Group Convolution带来的弊端。通过对ResNet的Bottleneck单元进行改进,在较小的计算量的情况下达到了较高的准确率。

Pointwise Group Convolution

Group Convolution(分组卷积)原理如下图所示,相比于普通的卷积操作,分组卷积的情况下,每一组的卷积核大小为in_channels/g*k*k,一共有g组,所有组共有(in_channels/g*k*k)*out_channels个参数,是正常卷积参数的1/g。分组卷积中,每个卷积核只处理输入特征图的一部分通道,其优点在于参数量会有所降低,但输出通道数仍等于卷积核的数量

shufflenet2

图片来源:Huang G, Liu S, Van der Maaten L, et al. Condensenet: An efficient densenet using learned group convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2752-2761.

Depthwise Convolution(深度可分离卷积)将组数g分为和输入通道相等的in_channels,然后对每一个in_channels做卷积操作,每个卷积核只处理一个通道,记卷积核大小为1*k*k,则卷积核参数量为:in_channels*k*k,得到的feature maps通道数与输入通道数相等

Pointwise Group Convolution(逐点分组卷积)在分组卷积的基础上,令每一组的卷积核大小为 1 × 1 1\times 1 1×1,卷积核参数量为(in_channels/g*1*1)*out_channels。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore
Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 
from mindspore import nn
import mindspore.ops as ops
from mindspore import Tensorclass GroupConv(nn.Cell):def __init__(self, in_channels, out_channels, kernel_size,stride, pad_mode="pad", pad=0, groups=1, has_bias=False):super(GroupConv, self).__init__()self.groups = groupsself.convs = nn.CellList()for _ in range(groups):self.convs.append(nn.Conv2d(in_channels // groups, out_channels // groups,kernel_size=kernel_size, stride=stride, has_bias=has_bias,padding=pad, pad_mode=pad_mode, group=1, weight_init='xavier_uniform'))def construct(self, x):features = ops.split(x, split_size_or_sections=int(len(x[0]) // self.groups), axis=1)outputs = ()for i in range(self.groups):outputs = outputs + (self.convs[i](features[i].astype("float32")),)out = ops.cat(outputs, axis=1)return out

Channel Shuffle

Group Convolution的弊端在于不同组别的通道无法进行信息交流,堆积GConv层后一个问题是不同组之间的特征图是不通信的,这就好像分成了g个互不相干的道路,每一个人各走各的,这可能会降低网络的特征提取能力。这也是Xception,MobileNet等网络采用密集的1x1卷积(Dense Pointwise Convolution)的原因。

为了解决不同组别通道“近亲繁殖”的问题,ShuffleNet优化了大量密集的1x1卷积(在使用的情况下计算量占用率达到了惊人的93.4%),引入Channel Shuffle机制(通道重排)。这项操作直观上表现为将不同分组通道均匀分散重组,使网络在下一层能处理不同组别通道的信息。

shufflenet3

如下图所示,对于g组,每组有n个通道的特征图,首先reshape成g行n列的矩阵,再将矩阵转置成n行g列,最后进行flatten操作,得到新的排列。这些操作都是可微分可导的且计算简单,在解决了信息交互的同时符合了ShuffleNet轻量级网络设计的轻量特征。

shufflenet4

为了阅读方便,将Channel Shuffle的代码实现放在下方ShuffleNet模块的代码中。

ShuffleNet模块

如下图所示,ShuffleNet对ResNet中的Bottleneck结构进行由(a)到(b), ©的更改:

  1. 将开始和最后的 1 × 1 1\times 1 1×1卷积模块(降维、升维)改成Point Wise Group Convolution;

  2. 为了进行不同通道的信息交流,再降维之后进行Channel Shuffle;

  3. 降采样模块中, 3 × 3 3 \times 3 3×3 Depth Wise Convolution的步长设置为2,长宽降为原来的一般,因此shortcut中采用步长为2的 3 × 3 3\times 3 3×3平均池化,并把相加改成拼接。

shufflenet5

class ShuffleV1Block(nn.Cell):def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):super(ShuffleV1Block, self).__init__()self.stride = stridepad = ksize // 2self.group = groupif stride == 2:outputs = oup - inpelse:outputs = oupself.relu = nn.ReLU()branch_main_1 = [GroupConv(in_channels=inp, out_channels=mid_channels,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=1 if first_group else group),nn.BatchNorm2d(mid_channels),nn.ReLU(),]branch_main_2 = [nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,pad_mode='pad', padding=pad, group=mid_channels,weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(mid_channels),GroupConv(in_channels=mid_channels, out_channels=outputs,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=group),nn.BatchNorm2d(outputs),]self.branch_main_1 = nn.SequentialCell(branch_main_1)self.branch_main_2 = nn.SequentialCell(branch_main_2)if stride == 2:self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')def construct(self, old_x):left = old_xright = old_xout = old_xright = self.branch_main_1(right)if self.group > 1:right = self.channel_shuffle(right)right = self.branch_main_2(right)if self.stride == 1:out = self.relu(left + right)elif self.stride == 2:left = self.branch_proj(left)out = ops.cat((left, right), 1)out = self.relu(out)return outdef channel_shuffle(self, x):batchsize, num_channels, height, width = ops.shape(x)group_channels = num_channels // self.groupx = ops.reshape(x, (batchsize, group_channels, self.group, height, width))x = ops.transpose(x, (0, 2, 1, 3, 4))x = ops.reshape(x, (batchsize, num_channels, height, width))return x

构建ShuffleNet网络

ShuffleNet网络结构如下图所示,以输入图像 224 × 224 224 \times 224 224×224,组数3(g = 3)为例,首先通过数量24,卷积核大小为 3 × 3 3 \times 3 3×3,stride为2的卷积层,输出特征图大小为 112 × 112 112 \times 112 112×112,channel为24;然后通过stride为2的最大池化层,输出特征图大小为 56 × 56 56 \times 56 56×56,channel数不变;再堆叠3个ShuffleNet模块(Stage2, Stage3, Stage4),三个模块分别重复4次、8次、4次,其中每个模块开始先经过一次下采样模块(上图©),使特征图长宽减半,channel翻倍(Stage2的下采样模块除外,将channel数从24变为240);随后经过全局平均池化,输出大小为 1 × 1 × 960 1 \times 1 \times 960 1×1×960,再经过全连接层和softmax,得到分类概率。

shufflenet6

class ShuffleNetV1(nn.Cell):def __init__(self, n_class=1000, model_size='2.0x', group=3):super(ShuffleNetV1, self).__init__()print('model size is ', model_size)self.stage_repeats = [4, 8, 4]self.model_size = model_sizeif group == 3:if model_size == '0.5x':self.stage_out_channels = [-1, 12, 120, 240, 480]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 240, 480, 960]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 360, 720, 1440]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 480, 960, 1920]else:raise NotImplementedErrorelif group == 8:if model_size == '0.5x':self.stage_out_channels = [-1, 16, 192, 384, 768]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 384, 768, 1536]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 576, 1152, 2304]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 768, 1536, 3072]else:raise NotImplementedErrorinput_channel = self.stage_out_channels[1]self.first_conv = nn.SequentialCell(nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(input_channel),nn.ReLU(),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')features = []for idxstage in range(len(self.stage_repeats)):numrepeat = self.stage_repeats[idxstage]output_channel = self.stage_out_channels[idxstage + 2]for i in range(numrepeat):stride = 2 if i == 0 else 1first_group = idxstage == 0 and i == 0features.append(ShuffleV1Block(input_channel, output_channel,group=group, first_group=first_group,mid_channels=output_channel // 4, ksize=3, stride=stride))input_channel = output_channelself.features = nn.SequentialCell(features)self.globalpool = nn.AvgPool2d(7)self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)def construct(self, x):x = self.first_conv(x)x = self.maxpool(x)x = self.features(x)x = self.globalpool(x)x = ops.reshape(x, (-1, self.stage_out_channels[-1]))x = self.classifier(x)return x

模型训练和评估

采用CIFAR-10数据集对ShuffleNet进行预训练。

训练集准备与加载

采用CIFAR-10数据集对ShuffleNet进行预训练。CIFAR-10共有60000张32*32的彩色图像,均匀地分为10个类别,其中50000张图片作为训练集,10000图片作为测试集。如下示例使用mindspore.dataset.Cifar10Dataset接口下载并加载CIFAR-10的训练集。目前仅支持二进制版本(CIFAR-10 binary version)。

from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"download(url, "./dataset", kind="tar.gz", replace=True)
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz (162.2 MB)file_sizes: 100%|█████████████████████████████| 170M/170M [00:01<00:00, 111MB/s]
Extracting tar.gz file...
Successfully downloaded / unzipped to ./dataset'./dataset'
import mindspore as ms
from mindspore.dataset import Cifar10Dataset
from mindspore.dataset import vision, transformsdef get_dataset(train_dataset_path, batch_size, usage):image_trans = []if usage == "train":image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]elif usage == "test":image_trans = [vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]label_trans = transforms.TypeCast(ms.int32)dataset = Cifar10Dataset(train_dataset_path, usage=usage, shuffle=True)dataset = dataset.map(image_trans, 'image')dataset = dataset.map(label_trans, 'label')dataset = dataset.batch(batch_size, drop_remainder=True)return datasetdataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "train")
batches_per_epoch = dataset.get_dataset_size()

模型训练

本节用随机初始化的参数做预训练。首先调用ShuffleNetV1定义网络,参数量选择"2.0x",并定义损失函数为交叉熵损失,学习率经过4轮的warmup后采用余弦退火,优化器采用Momentum。最后用train.model中的Model接口将模型、损失函数、优化器封装在model中,并用model.train()对网络进行训练。将ModelCheckpointCheckpointConfigTimeMonitorLossMonitor传入回调函数中,将会打印训练的轮数、损失和时间,并将ckpt文件保存在当前目录下。

import time
import mindspore
import numpy as np
from mindspore import Tensor, nn
from mindspore.train import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor, Model, Top1CategoricalAccuracy, Top5CategoricalAccuracydef train():mindspore.set_context(mode=mindspore.PYNATIVE_MODE, device_target="Ascend")# net = ShuffleNetV1(model_size="2.0x", n_class=10)net = ShuffleNetV1(model_size="0.5x", n_class=10)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)min_lr = 0.0005base_lr = 0.05lr_scheduler = mindspore.nn.cosine_decay_lr(min_lr,base_lr,batches_per_epoch*250,batches_per_epoch,decay_epoch=250)lr = Tensor(lr_scheduler[-1])optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.00004, loss_scale=1024)loss_scale_manager = ms.amp.FixedLossScaleManager(1024, drop_overflow_update=False)model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level="O3", loss_scale_manager=loss_scale_manager)callback = [TimeMonitor(), LossMonitor()]save_ckpt_path = "./"config_ckpt = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=5)ckpt_callback = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ckpt)callback += [ckpt_callback]print("============== Starting Training ==============")start_time = time.time()# 由于时间原因,epoch = 5,可根据需求进行调整model.train(5, dataset, callbacks=callback)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))print("total time:" + hour + "h " + minute + "m " + second + "s")print("============== Train Success ==============")if __name__ == '__main__':train()
model size is  0.5x
============== Starting Training ==============
epoch: 1 step: 1, loss is 2.602555274963379
epoch: 1 step: 2, loss is 2.5641419887542725
epoch: 1 step: 3, loss is 2.5605194568634033
epoch: 1 step: 4, loss is 2.445266008377075
epoch: 1 step: 5, loss is 2.4659340381622314
epoch: 1 step: 6, loss is 2.4339487552642822
epoch: 1 step: 7, loss is 2.3650155067443848
epoch: 1 step: 8, loss is 2.352776050567627
epoch: 1 step: 9, loss is 2.3119568824768066
epoch: 1 step: 10, loss is 2.297975778579712
epoch: 1 step: 11, loss is 2.2929701805114746
epoch: 1 step: 12, loss is 2.236536741256714
epoch: 1 step: 13, loss is 2.40505313873291
epoch: 1 step: 14, loss is 2.3632290363311768
epoch: 1 step: 15, loss is 2.427211284637451
epoch: 1 step: 16, loss is 2.389260768890381
epoch: 1 step: 17, loss is 2.278745651245117
epoch: 1 step: 18, loss is 2.3015830516815186
epoch: 1 step: 19, loss is 2.2679598331451416
epoch: 1 step: 20, loss is 2.251993417739868
epoch: 1 step: 21, loss is 2.2501304149627686
epoch: 1 step: 22, loss is 2.2664272785186768
epoch: 1 step: 23, loss is 2.268998384475708
epoch: 1 step: 24, loss is 2.249323606491089
epoch: 1 step: 25, loss is 2.2754223346710205
epoch: 1 step: 26, loss is 2.2544331550598145
epoch: 1 step: 27, loss is 2.2413394451141357
epoch: 1 step: 28, loss is 2.310964822769165
epoch: 1 step: 190, loss is 1.9756882190704346
epoch: 1 step: 191, loss is 2.0467123985290527
epoch: 1 step: 192, loss is 2.015138626098633
epoch: 1 step: 193, loss is 2.0590052604675293
epoch: 1 step: 194, loss is 2.08339786529541
epoch: 1 step: 195, loss is 2.0886242389678955
epoch: 1 step: 196, loss is 2.0785837173461914



epoch: 5 step: 26, loss is 1.7299295663833618
epoch: 5 step: 27, loss is 1.7681633234024048
epoch: 5 step: 28, loss is 1.6620925664901733
epoch: 5 step: 29, loss is 1.6640541553497314
epoch: 5 step: 30, loss is 1.700564980506897
epoch: 5 step: 31, loss is 1.7993314266204834
epoch: 5 step: 32, loss is 1.7511837482452393
epoch: 5 step: 33, loss is 1.7358088493347168
epoch: 5 step: 34, loss is 1.8399680852890015
epoch: 5 step: 35, loss is 1.8288452625274658
epoch: 5 step: 36, loss is 1.760751724243164
epoch: 5 step: 37, loss is 1.8667253255844116
epoch: 5 step: 38, loss is 1.7133476734161377
epoch: 5 step: 39, loss is 1.766150712966919
epoch: 5 step: 40, loss is 1.7172778844833374
epoch: 5 step: 41, loss is 1.6493042707443237
epoch: 5 step: 42, loss is 1.706695795059204
epoch: 5 step: 43, loss is 1.7643200159072876
epoch: 5 step: 44, loss is 1.8378987312316895
epoch: 5 step: 45, loss is 1.6942284107208252
epoch: 5 step: 46, loss is 1.6833163499832153
epoch: 5 step: 47, loss is 1.7402489185333252
epoch: 5 step: 48, loss is 1.642223834991455
epoch: 5 step: 49, loss is 1.6894333362579346
epoch: 5 step: 50, loss is 1.7403620481491089
epoch: 5 step: 51, loss is 1.714734673500061
epoch: 5 step: 52, loss is 1.5632680654525757
Train epoch time: 127445.385 ms, per step time: 326.783 ms
total time:0h 16m 20s
============== Train Success ==============

训练好的模型保存在当前目录的shufflenetv1-5_390.ckpt中,用作评估。

模型评估

在CIFAR-10的测试集上对模型进行评估。

设置好评估模型的路径后加载数据集,并设置Top 1, Top 5的评估标准,最后用model.eval()接口对模型进行评估。

from mindspore import load_checkpoint, load_param_into_netdef test():mindspore.set_context(mode=mindspore.GRAPH_MODE, device_target="Ascend")dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "test")net = ShuffleNetV1(model_size="2.0x", n_class=10)param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")load_param_into_net(net, param_dict)net.set_train(False)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)eval_metrics = {'Loss': nn.Loss(), 'Top_1_Acc': Top1CategoricalAccuracy(),'Top_5_Acc': Top5CategoricalAccuracy()}model = Model(net, loss_fn=loss, metrics=eval_metrics)start_time = time.time()res = model.eval(dataset, dataset_sink_mode=False)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))log = "result:" + str(res) + ", ckpt:'" + "./shufflenetv1-5_390.ckpt" \+ "', time: " + hour + "h " + minute + "m " + second + "s"print(log)filename = './eval_log.txt'with open(filename, 'a') as file_object:file_object.write(log + '\n')if __name__ == '__main__':test()
model size is  2.0x[ERROR] CORE(16936,ffff9fb5a930,python):2024-07-06-04:53:44.572.359 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_16936/3162391481.py]

result:{'Loss': 1.5386667603101485, 'Top_1_Acc': 0.5278445512820513, 'Top_5_Acc': 0.9424078525641025}, ckpt:'./shufflenetv1-5_390.ckpt', time: 0h 0m 52s

模型预测

在CIFAR-10的测试集上对模型进行预测,并将预测结果可视化。

import mindspore
import matplotlib.pyplot as plt
import mindspore.dataset as dsnet = ShuffleNetV1(model_size="2.0x", n_class=10)
show_lst = []
param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")
load_param_into_net(net, param_dict)
model = Model(net)
dataset_predict = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = dataset_show.batch(16)
show_images_lst = next(dataset_show.create_dict_iterator())["image"].asnumpy()
image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]
dataset_predict = dataset_predict.map(image_trans, 'image')
dataset_predict = dataset_predict.batch(16)
class_dict = {0:"airplane", 1:"automobile", 2:"bird", 3:"cat", 4:"deer", 5:"dog", 6:"frog", 7:"horse", 8:"ship", 9:"truck"}
# 推理效果展示(上方为预测的结果,下方为推理效果图片)
plt.figure(figsize=(16, 5))
predict_data = next(dataset_predict.create_dict_iterator())
output = model.predict(ms.Tensor(predict_data['image']))
pred = np.argmax(output.asnumpy(), axis=1)
index = 0
for image in show_images_lst:plt.subplot(2, 8, index+1)plt.title('{}'.format(class_dict[pred[index]]))index += 1plt.imshow(image)plt.axis("off")
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42126.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分享实现地铁车辆侧面图

简介 通过伪类和关键帧动画实现地铁车辆侧面图 在线演示 伪元素和关键帧动画 实现代码 <!DOCTYPE html><html><head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8" /> <meta http-equiv"X-UA-Co…

设计模式之单例模式(Java)

单例模式实现方式&#xff1a;懒汉式、饿汉式、双重检查、枚举、静态内部类&#xff1b; 懒汉式&#xff1a; /*** 懒汉式单例模式* author: 小手WA凉* create: 2024-07-06*/ public class LazySingleton implements Serializable {private static LazySingleton lazySinglet…

对BSV区块链的曼达拉网络通俗易懂的解释

​​发表时间&#xff1a;2023年6月15日 BSV区块链正在引入“曼达拉”升级&#xff0c;使BSV区块链网络的拓扑结构能够适配Teranode&#xff0c;适配这个可以大幅扩容的节点软件。BSV区块链上曼达拉网络的概念并不会改变整个系统的核心规则&#xff1b;相反&#xff0c;它能够引…

为什么https比http更安全

读完本文&#xff0c;希望你能明白&#xff1a; HTTP通信存在什么问题HTTPS如何改进HTTP存在那些问题HTTPS工作原理是什么 一、什么是HTTPS HTTPS是在HTTP上建立SSL加密层&#xff0c;并对传输数据进行加密&#xff0c;是HTTP协议的安全版。现在它被广泛用于万维网上安全敏感…

【qt】如何获取本机的IP地址?

需要用到这个类QHostInfo和pro里面添加network模块 用这个类的静态函数forName()来获取该主机名的信息 返回的就是这个类 这个QHostInfo类就包括主机的IP地址信息 用静态函数addresses()来获取 返回的是一个QHostAddress的容器 QList<QHostAddress>addrList hostIn…

课题申报书中要用的思路图(技术路线图)30张,超高清!

最近在弄课题申报书的时候&#xff0c;需要画“技术路线图”&#xff1b;和小伙伴们探讨才发现很多人居然不会画这种图&#xff0c;还有很多人在Word里面一点一点拼凑…… 我给大家收集了网上非常热门的30张“技术路线图”&#xff0c;但网上流传的都太模糊了&#xff0c;想看…

KBPC3506-ASEMI储能专用整流桥KBPC3506

编辑&#xff1a;ll KBPC3506-ASEMI储能专用整流桥KBPC3506 型号&#xff1a;KBPC3506 品牌&#xff1a;ASEMI 封装&#xff1a;KBPC-4 正向电流&#xff08;Id&#xff09;&#xff1a;35A 反向耐压&#xff08;VRRM&#xff09;&#xff1a;600V 正向浪涌电流&#xf…

基于RK3588的8路摄像头实时全景拼接

基于RK3588的8路摄像头实时全景拼接 输入&#xff1a;2路csi转8路mpi的ahd摄像头&#xff0c;分辨率1920 * 1080 8路拼接结果&#xff1a; 6路拼接结果&#xff1a; UI界面&#xff1a; UI节目设计原理

SpringBoot新手快速入门系列教程一:window上编程环境安装和配置

首先编译器&#xff0c;建议各位不要去尝试AndroidStudio和VisualStudio来做SpringBoot项目。乖乖的直接下载最新版即可 https://www.jetbrains.com.cn/idea/ 当然这是一个收费的IDE&#xff0c;想要便宜可以想办法去某宝买授权&#xff0c;仅供学习参考用&#xff01;赚了钱…

Matlab中collectPlaneWave函数的应用

查看文档如下&#xff1a; 可以看出最多5个参数&#xff0c;分别是阵列对象&#xff0c;信号幅度&#xff0c;入射角度&#xff0c;信号频率&#xff0c;光速。 在下面的代码中&#xff0c;我们先创建一个3阵元的阵列&#xff0c;位置为&#xff1a;&#xff08;-1,0,0&#x…

52-3 权限维持 - IFEO注入(镜像劫持)

IFEO注入(映像劫持)介绍 IFEO(Image File Execution Options)位于Windows注册表中的路径为: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options IFEO最初设计用于为在默认系统环境下可能出现错误的程序提供特殊的调试和执…

Android实现获取本机手机号码

和上次获取设备序列号一样&#xff0c;仍然是通过无障碍服务实现&#xff0c;在之前的代码基础上做了更新。代码和demo如下&#xff1a; package com.zwxuf.lib.devicehelper;import android.accessibilityservice.AccessibilityService; import android.app.Activity; import…

Bpuzzle V1.2 支持任意图片!BlueLife Puzzle (bPuzzle) 是一款简单的游戏,通过按正确的顺序滑动拼图块来玩

BlueLife Puzzle (bPuzzle) 是一款简单的游戏&#xff0c;通过按正确的顺序滑动拼图块来玩。将您选择的图像拖放到主窗口或使用文件菜单选择默认图像。如果图片格式是 JPG&#xff0c;大小无关紧要&#xff0c;但如果是 Png&#xff0c;则应为 800600 像素&#xff0c;然后 bPu…

nginx配置尝试

from fastapi import FastAPI, File, UploadFile, HTTPException from fastapi.responses import JSONResponse, FileResponse, HTMLResponse import logging import os from datetime import datetime import uvicorn# 初始化日志 logging.basicConfig(filenamefile_server.lo…

详细的讲解一下网络变压器应用POE ,AT BT AF BF的概念,做电路连接指导分析

网络变压器在应用POE&#xff08;Power over Ethernet&#xff09;技术时&#xff0c;承担着重要的角色。它不仅负责数据的传输&#xff0c;同时也为网络设备提供电力。在IEEE 802.3标准中&#xff0c;定义了几个与POE相关的标准&#xff0c;包括802.3af、802.3at、802.3bt等&a…

智慧景区解决方案PPT(89页)

智慧景区解决方案摘要 解决方案概述智慧景区解决方案旨在利用现代信息技术解决景区管理机构面临的保护与发展矛盾&#xff0c;推动服务职能转变&#xff0c;促进旅游产业跨越式发展&#xff0c;实现旅游经营增长和管理成本优化。 宏观政策背景国家旅游局发布的《“十三五”全国…

VideoAgent——使用大规模语言模型作为代理来理解长视频

概述 论文地址&#xff1a;https://arxiv.org/pdf/2403.10517 本研究引入了一个新颖的基于代理的系统&#xff0c;名为 VideoAgent。该系统以大规模语言模型为核心&#xff0c;负责识别关键信息以回答问题和编辑视频。VideoAgent 在具有挑战性的 EgoSchema 和 NExT-QA 基准上进…

数据特征采样在 MySQL 同步一致性校验中的实践

作者&#xff1a;vivo 互联网存储研发团队 - Shang Yongxing 本文介绍了当前DTS应用中&#xff0c;MySQL数据同步使用到的数据一致性校验工具&#xff0c;并对它的实现思路进行分享。 一、背景 在 MySQL 的使用过程中&#xff0c;经常会因为如集群拆分、数据传输、数据聚合等…

容器:queue(队列)

以下是关于queue容器的总结 1、构造函数&#xff1a;queue [queueName] 2、添加、删除元素: push() 、pop() 3、获取队头/队尾元素&#xff1a;front()、back() 4、获取栈的大小&#xff1a;size() 5、判断栈是否为空&#xff1a;empty() #include <iostream> #include …

https 自签证书相关生成csr文件、p12文件、crt文件、jks文件、key文件、pem文件

文章目录 前言https 自签证书相关生成csr文件、p12文件、crt文件、jks文件、key文件、pem文件1, 检查openssl的版本2. 生成私钥和证书签署请求 (CSR)3. 生成自签名证书4. 将证书和私钥转换为 PKCS12 格式的密钥库5. 创建信任库 (Truststore)6. 将 PKCS12 文件转换为 JKS 文件7.…