一文理解 Treelite,Treelite 为决策树集成模型的部署和推理提供了高效、灵活的解决方案

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


一、什么是 Treelite?

Treelite 是一个专门用于将决策树集成模型高效部署到生产环境中的机器学习模型编译器,特别适合处理大批量数据的推理任务,能够显著提升推理性能。它提供多个前端接口,可与其他集成梯度提升树库(如 XGBoost、LightGBM 和 scikit-learn)配合使用。通过编译优化,Treelite 能将模型的性能提升 2 到 6 倍,相比于原生模型。Treelite 的核心功能在于将树模型编译为高效的 C 代码,从而在推理阶段实现显著的性能提升。

Treelite 官网:https://treelite.readthedocs.io/en/latest/index.html#

Treelite 的主要功能

  • 模型编译:将决策树模型编译成高效的可部署形式,方便部署。
  • 性能优化:使用 Treelite 进行模型编译优化后的性能相比于原生的 XGBoost、LightGBM 模型通常会提升 2-4 倍。
  • 互操作性:支持与其他树模型库(例如 XGBoost、LightGBM 和 scikit-learn)的无缝集成。

Treelite 的设计特点

  • 模块化设计:前端(与其他树库交互的部分)和后端(生成可部署 C 文件的部分)之间有明显的分离。前端负责与其他树库的交互,后端负责生成可部署的 C 文件。这种设计使得 Treelite 能够轻松地与不同的树模型库集成,同时保持其核心编译功能的独立性
  • 前端接口:提供了多个前端接口来与其他树库配合使用,包括专用接口导入 XGBoost、LightGBM 和 scikit-learn 生成的模型
  • 可扩展性:允许用户以编程方式指定其模型,还支持自定义模型编译。

在这里插入图片描述

Treelite 支持的模型类型

  • 决策树集成:包括随机森林和梯度提升决策树(GBDTs)。
  • 支持的前端接口:XGBoost、LightGBM 和 scikit-learn。

Treelite 的设计与实现

  • 编译过程:Treelite 的编译过程包括将树模型转换为中间表示(Intermediate Representation,IR),然后优化该 IR 并生成最终的 C 代码。这一过程充分利用了编译器优化技术,将树模型转换为高效的代码,从而在推理阶段实现快速响应。
  • 优化策略:Treelite 采用多种优化策略,包括逻辑分支优化、内存访问优化和并行计算优化,以提高模型推理速度。这些优化策略使得 Treelite 生成的 C 代码在推理时能够充分利用硬件资源,实现高性能推理。

Treelite 的性能优势:优化后的模型在预测速度上相比原生模型有显著提升,最高可提高 6 倍。Treelite 主要在以下两个方面进行了改进:

  • 通过规则编译加快预测速度。将决策规则 “编译” 为嵌套的 if-else 条件,可以将给定的树集成模型转化为 C 程序。在转换过程中,每个测试节点被转化为一对 if-else 语句,随后递归地将左右子节点扩展为 C 代码,直至触及每个叶节点。通过这种方式,我们能够针对正在检查的模型实现编译时优化。以前,模型在运行时从文件中加载,且预测逻辑并未考虑到与特定模型相关的信息。然而,现在通过规则编译,编译器能够访问正在编译的特定模型中的每一位信息,进而利用这些信息进一步优化生成的机器代码。作为早期演示,Treelite 提供了两种优化方案。
  • 逻辑分支优化,对条件分支进行注释。我们预测每个条件的可能性时,会依据训练数据中满足该条件的数据点数量。若条件在训练数据中有至少 50% 的概率为真,则将其标记为 “预期为真”;否则,标记为 “预期为假”。GCC 和 clang 编译器均提供 __builtin_expect 这一编译器内在函数,用以指定条件的预期结果。这有助于编译器更智能地决定分支顺序,从而改进分支预测。
  • 逻辑比较优化方面,原始的分支比较可能涉及浮点数比较逻辑。为提高效率,我们建议将浮点数比较量化为整数数值比较。这一优化措施将测试节点中的所有阈值转换为整数,从而确保每个阈值条件都执行整数比较,而非传统的浮点比较。通过 “量化” 阈值为整数索引,在 x86-64 等平台上,将浮点比较替换为整数比较,不仅减少了可执行代码的大小,还改善了数据局部性,进而提升了性能。

Treelite 的应用场景

  • 大规模数据推理:特别适用于需要处理大量数据的场景。
  • 模型部署:高效地将训练好的模型部署到生产环境中。

通过这些功能和应用场景,Treelite 为数据科学家和机器学习工程师提供了一个强大的工具,用于优化决策树集成模型的部署和推理性能。


二、为什么要用 Treelite?

在生产环境部署决策树集成模型,为什么要使用 Treelite?

在生产环境中部署决策树集成模型时,选择使用 Treelite 的主要原因包括以下几点

  • 模型导出和独立的预测库:Treelite 可以将训练好的模型导出为独立的预测库,从而在部署时无需安装任何机器学习包,简化部署流程。
  • 模型编译优化:Treelite 可以将树模型编译优化为单独的库,显著提高模型的预测速度,例如,XGBoost 模型的预测速度可提高 2~6 倍。
  • 支持多种树模型:Treelite 支持包括随机森林、GBDT、XGBoost、LightGBM 和 scikit-learn 等在内的多种流行机器学习库。
  • 跨语言支持:Treelite 提供多个前端接口,便于将模型部署到不同编程语言环境(如 C、Java 等),从而更容易地集成到现有生产系统中。
  • 性能提升:使用 Treelite 进行模型编译优化后,性能通常比原生的 XGBoost、LightGBM 模型提升 2~4 倍,这对处理大批量数据的推理场景尤为重要。
  • 良好的社区支持:Treelite 拥有一个活跃的社区,提供详细的文档和丰富的资源,如官方文档、技术论文和示例代码等。这些资源为开发者提供了深入学习和使用的便利,进一步推动了 Treelite 在机器学习领域的应用和发展。

综上所述,Treelite 以其模型导出、编译优化、多模型支持、跨语言部署和性能提升等特点,成为生产环境中部署决策树集成模型的首选工具。


三、使用 Treelite 部署决策树集成模型的具体操作步骤

Treelite 是一个专门用于加速决策树集成模型推理(预测)速度的库。在生产环境中部署决策树集成模型时,使用 Treelite 可以显著加快模型的推理速度。以下是使用 Treelite 在生产环境中部署决策树集成模型的具体操作步骤:

1. 安装 Treelite 和 TL2cgen

确保你已经安装好了 Treelite 和 TL2cgen。如果没有安装,可以使用以下命令进行安装:

pip install treelite
pip install tl2cgen

2. 准备模型

确保你拥有一个经过良好训练的决策树集成模型,如使用 XGBoost、LightGBM 或 CatBoost 训练得到的模型。模型需保存为支持的格式,常见的格式包括 JSON、BSON 或 pickle。

3. 转换为 Treelite 格式

将你的决策树模型转换成 Treelite 可以识别的格式。通常,这需要使用 Treelite 提供的 API 来加载模型。下面是一个使用 XGBoost 模型的示例:

import tl2cgen
import treelite
import xgboost as xgb# Importing tree ensemble models:https://treelite.readthedocs.io/en/latest/tutorials/import.html## Treelite 3.x 及更早版本
# xgb_model = treelite.Model.load("my_model.json", model_format="xgboost_json")
# JSON format
model = treelite.frontend.load_xgboost_model("my_model.json")
# Legacy binary format
model = treelite.frontend.load_xgboost_model_legacy_binary("my_model.model")
# To import models generated by LightGBM, use the load_lightgbm_model() method:
model = treelite.frontend.load_lightgbm_model("lightgbm_model.txt")

补充以下内容:

  • TL2cgen:Treelite 树编译器已迁移到 TL2cgen。TL2cgen(TreeLite 2 C 生成器)是一个决策树模型的模型编译器。您可以将任何决策树集成模型(随机森林、梯度提升模型)转换为 C 代码,并将其作为原生二进制文件分发。
  • TL2cgen 与 Treelite 无缝集成。任何由 Treelite 支持的树模型都可以通过 TL2cgen 转换为 C 语言代码。TL2cgen 是一个模型编译器,能够将树模型转换为 C 代码。它可以转换所有采用 Treelite 格式存储的树模型。TL2cgen 是众多使用 Treelite 作为库的应用程序之一。
  • 从 4.0 版本起,Treelite 停止支持将树模型编译为 C 代码,该功能已转移至 TL2cgen。从 4.0 版本起,Treelite 已转变为一个小型库,使得其他 C++ 应用程序能够在磁盘和网络上交换及存储决策树。使用 Treelite 可以帮助应用程序开发者支持多种树模型,同时减少代码重复并保持高度的准确性。树模型采用一种高效的二进制格式进行存储

4. 编译 Treelite 模型

为了加快部署推理速度,Treelite 需要将模型编译成高效的机器码。这一步骤通常包括指定目标平台和选择编译器选项。例如,若你打算在 CPU 上运行模型,可以采取以下步骤:

# 编译模型为动态链接库
toolchain = 'gcc'  # 或者其他你使用的编译器,如 'clang', 'msvc'
tl2cgen.export_lib(model, toolchain=toolchain, libpath="./mymodel.so", params={'parallel_comp': 32})

5. 加载编译后的模型

在生产环境中,需要加载编译后的模型文件,如动态链接库(.so 文件或 .dll 文件),使用 tl2cgen 的 Predictor 类加载 .so 文件。

predictor = tl2cgen.Predictor("./mymodel.so")

6. 进行预测

使用编译后的模型对新数据进行预测时,需确保输入数据的格式与训练时的数据格式一致:

# 假设 X 是特征矩阵
dmat = tl2cgen.DMatrix(X[10:20, :])
out_pred = predictor.predict(dmat)
print(out_pred)

7. 性能优化

如有必要,可对模型进行性能优化,例如通过量化参数以减少内存占用并提高推理速度。

8. 集成到生产环境

最后,需将编译后的模型及必要的 Treelite 运行时代码集成至生产环境,以便实际应用。

请注意,具体的 API 调用和参数设置可能因模型类型和所用机器学习框架而异。务必参考 Treelite 官方文档获取最新、准确的信息。

总的来说,Treelite 是一款优秀的决策树集成模型部署和推理优化工具,支持将模型部署为 .so 文件,不仅便于其他语言调用,还能有效防止模型参数泄露。


📚️ 相关链接:

  • AI 编译器技术剖析(三)- 树模型编译工具 Treelite 详解

  • Treelite:树模型部署加速工具(支持 XGBoost、LightGBM 和 Sklearn)

  • Treelite is a universal model exchange and serialization format for decision tree forests.

  • TL2cgen: model compiler for decision trees

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/41955.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Vite]Vite插件生命周期了解

[Vite]Vite插件生命周期了解 Chunk和Bundle的概念 Chunk: 在 Vite 中,chunk 通常指的是应用程序中的一个代码片段,它是通过 Rollup 或其他打包工具在构建过程中生成的。每个 chunk 通常包含应用程序的一部分逻辑,可能是一个路由视…

【刷题汇总--大数加法、 链表相加(二)、大数乘法】

C日常刷题积累 今日刷题汇总 - day0061、大数加法1.1、题目1.2、思路1.3、程序实现 2、 链表相加(二)2.1、题目2.2、思路2.3、程序实现 3、大数乘法3.1、题目3.2、思路3.3、程序实现 4、题目链接 今日刷题汇总 - day006 1、大数加法 1.1、题目 1.2、思路 读完题,明白大数相加…

郭明錤:苹果将为Vision Pro推出红外摄像头款AirPods

在科技界,苹果公司的每一次创新都备受瞩目。近日,著名苹果分析师郭明錤透露了一个令人振奋的消息:苹果计划在2026年推出配备红外摄像头的新款AirPods,这款耳机将特别优化与Apple Vision Pro头显的空间体验。这一消息不仅预示着苹果在音频设备领域的又一次技术飞跃,也进一步…

策略为王股票软件源代码-----如何修改为自己软件62----资讯菜单修改-----举例---------调用同花顺F10资讯------

//char szInfoF10[] "http://www.f10.com.cn/ggzx/ggzl.asp?zqdm%s"; char szInfoF10[] "http://basic.10jqka.com.cn/601899/"; // MENUITEM "F10资讯(&F)", ID_INFO_F10 MENUITEM &…

多功能工具网站

江下科技在线应用-免费PDF转换成Word-word转pdf-无需下载安装 (onlinedo.cn)https://www.onlinedo.cn/

【OnlyOffice】桌面应用编辑器,插件开发大赛,等你来挑战

OnlyOffice,桌面应用编辑器,最近版本已从8.0升级到了8.1 从PDF、Word、Excel、PPT等全面进行了升级。随着AI应用持续的火热,OnlyOffice也在不断推出AI相关插件。 因此,在此给大家推荐一下OnlyOffice本次的插件开发大赛。 详细信息…

52-4 内网代理1 - 内网代理简介

一、正向连接 正向连接是指受控端主机监听一个端口,由控制端主机主动发起连接的过程。这种连接方式适用于受控主机拥有公网IP地址的情况。例如,在攻击者和受害者都具有公网IP的情况下,攻击者可以直接通过受害者的公网IP地址访问受害者主机,因此可以使用正向连接来建立控制通…

HTML5使用<pre>标签:保留原始排版方式

在网页创作中,一般是通过各种标记对文字进行排版的。但是在实际应用中,往往需要一些特殊的排版效果,这样使用标记控制起来会比较麻烦。解决的方法就是保留文本格式的排版效果,如空格、制表符等。 如果要保留原始的文本排版效果&a…

MySQL的count()方法慢

前言 mysql用count方法查全表数据,在不同的存储引擎里实现不同,myisam有专门字段记录全表的行数,直接读这个字段就好了。而innodb则需要一行行去算。 比如说,你有一张短信表(sms),里面放了各种需要发送的短信信息。 …

关于linux服务器更改镜像后连接不上vscode问题

问题样子解决办法直接看 问题样子 问题描述:从centos换到ubantu后,xshell能直接连接上(没有更改ssh配置信息),但是vscode连不上(配置文件因为端口号和ip是一样的,也没法改) 猜测…

基于支持向量机、孤立森林和LSTM自编码器的机械状态异常检测(MATLAB R2021B)

异常检测通常是根据已有的观测数据建立正常行为模型,从而将不同机制下产生的远离正常行为的数据划分为异常类,进而实现对异常状态的检测。常用的异常检测方法主要有:统计方法、信息度量方法、谱映射方法、聚类方法、近邻方法和分类方法等。 …

Android仿今日头条新闻(一)

新建一个侧边栏的文件,创建成功后直接运行。可以看到带滑动的侧边栏功能如图所示: 主体UI: 新闻UI的实现: 侧边栏: 更换一下颜色: 学习参考-浩宇开发

AI老照片生成视频

地址:AI老照片 让你的图片动起来, 老照片修复与动态化

RK3568平台(opencv篇)opencv处理图像视频

一.读取图像文件并展示 灰度图像: 灰度图需要用 8 位二进制来表示,取值范围是 0-255。用 0 表示 0(黑色), 用 255 表示 1(白色),取值越大表示该点越亮。 RGB 彩色图像:…

前端面试题13(API请求方法)

在前端JavaScript中,进行API请求主要可以通过几种方式来实现,最常见的是使用XMLHttpRequest(较旧的方法)、fetch(现代浏览器推荐方法)以及使用第三方库如axios或jQuery.ajax等。 1. XMLHttpRequest 这是最…

昇思第10天

RNN实现情感分类 二分类问题:Positive和Negative两类 步骤: 1.加载IMDB数据集 2.加载预训练词向量:预训练词向量是对输入单词的数值化表示,通过nn.Embedding层,采用查表的方式,输入单词对应词表中的index,…

【算法专题】模拟算法题

模拟算法题往往不涉及复杂的数据结构或算法,而是侧重于对特定情景的代码实现,关键在于理解题目所描述的情境,并能够将其转化为代码逻辑。所以我们在处理这种类型的题目时,最好要现在演草纸上把情况理清楚,再动手编写代…

FreeRTOS——队列集

一、队列集 一个队列只允许任务间传递的消息为 同一种数据类型 ,如果需要在任务间 传递不同数据类型的消息 时,那么就可以使用队列集 作用:用于对多个队列或信号量进行“监听”(接收或获取),其中 不管哪一…

js 使用 lodash-es 检测某个值是否是函数

import { isFunction } from lodash-eslet isA isFunction(() > {}) console.log(isA) //true https://www.lodashjs.com/docs/lodash.isFunction#_isfunctionvalue https://lodash.com/docs/4.17.15#isFunction 人工智能学习网站 https://chat.xutongbao.top

JSP WEB开发(一) JSP语言基础

目录 JSP JSP简介: JSP页面 JSP运行原理 JSP脚本元素 JAVA程序片 局部变量 全局变量和方法的声明 全局变量 方法的声明 程序片执行特点 synchronized关键字 表达式 JSP指令标记 page指令 include指令 JSP动作标记 JSP动作元素include和include指令的…