支持向量机(Support Vector Machine,SVM)及Python和MATLAB实现

支持向量机(Support Vector Machine,SVM)是一种经典的机器学习算法,广泛应用于模式识别、数据分类和回归分析等领域。SVM的背景可以追溯到1990s年代,由Vladimir Vapnik等人提出,并在之后不断发展和完善。

**原理:**
SVM的基本原理是找到一个最优的超平面(线性或非线性),使得数据集中的不同类别点之间的间隔最大化。在二维空间中,这个超平面就是一条直线,而在更高维度的空间中,这个超平面就是一个超平面。SVM通过将数据映射到高维空间,在该空间中找到最优超平面以实现数据的线性可分或近似可分。

**实现步骤:**
1. 数据预处理:包括数据清洗、特征提取、特征选择等。
2. 选择核函数:线性核、多项式核、高斯核等。
3. 计算最优超平面:通过优化问题来确定划分数据的最优超平面。
4. 预测和分类:利用训练好的模型对新数据进行分类。

**优缺点:**
- 优点:对于高维空间数据和非线性数据有很好的分类效果;泛化能力强;解决小样本情况下的机器学习问题效果很好;能够处理高维数据集。
- 缺点:对大规模数据的计算开销较大;对缺失数据敏感;需要选择合适的核函数和参数。

**相关应用:**
SVM在各个领域都有广泛的应用,包括但不限于:
1. 图像分类:通过构建SVM模型实现图像分类,例如人脸识别、物体识别等。
2. 生物信息学:用于生物序列分析、基因识别等。
3. 自然语言处理:在文本分类、情感分析、信息检索等方面有着重要应用。
4. 金融领域:用于信用评分、股票市场预测等。
5. 医学领域:在医学影像诊断、疾病分类等方面得到广泛应用。

SVM作为一种强大的机器学习方法,具有较好的分类能力和泛化性能,在处理各种类型的数据时表现出色。然而,在使用SVM时应注意选择合适的参数和核函数,以及解决计算效率和存储问题。随着机器学习领域的不断发展,SVM仍然是一个重要且有着广泛应用的算法。

以下是使用Python和MATLAB实现支持向量机(SVM)进行回归和分类的简单示例代码:

Python示例代码:

# SVM回归示例
from sklearn import datasets
from sklearn import svm
from sklearn.model_selection import train_test_split

# 加载数据
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 创建SVM回归模型
svr = svm.SVR(kernel='linear')
svr.fit(X_train, y_train)

# 预测
y_pred = svr.predict(X_test)

# SVM分类示例
from sklearn import datasets
from sklearn import svm
from sklearn.model_selection import train_test_split

# 加载数据
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 创建SVM分类模型
svc = svm.SVC(kernel='linear')
svc.fit(X_train, y_train)

# 预测
y_pred = svc.predict(X_test)

MATLAB示例代码:

% SVM回归示例
load fisheriris
X = meas;
y = (1:150)';

Mdl = fitrsvm(X, y, 'Standardize', true);

% 预测
y_pred = predict(Mdl, X);

% SVM分类示例
load fisheriris
X = meas;
y = species;

Mdl = fitcecoc(X, y);

% 预测
y_pred = predict(Mdl, X);

请注意,以上示例代码仅供参考,实际上使用时可能需要根据具体问题的数据集和需求进行适当调整和修改。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/41943.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTML5使用<pre>标签:保留原始排版方式

在网页创作中,一般是通过各种标记对文字进行排版的。但是在实际应用中,往往需要一些特殊的排版效果,这样使用标记控制起来会比较麻烦。解决的方法就是保留文本格式的排版效果,如空格、制表符等。 如果要保留原始的文本排版效果&a…

MySQL的count()方法慢

前言 mysql用count方法查全表数据,在不同的存储引擎里实现不同,myisam有专门字段记录全表的行数,直接读这个字段就好了。而innodb则需要一行行去算。 比如说,你有一张短信表(sms),里面放了各种需要发送的短信信息。 …

004 返回值处理

文章目录 不使用注解修饰ModelAndViewvoidString(推荐) 使用注解修饰ResponseBody注解常用的HttpMessageConverter 不使用注解修饰 ModelAndView Controller方法中定义ModelAndView对象并返回,对象中可添加model数据、指定view。 void 在Co…

关于linux服务器更改镜像后连接不上vscode问题

问题样子解决办法直接看 问题样子 问题描述:从centos换到ubantu后,xshell能直接连接上(没有更改ssh配置信息),但是vscode连不上(配置文件因为端口号和ip是一样的,也没法改) 猜测…

基于支持向量机、孤立森林和LSTM自编码器的机械状态异常检测(MATLAB R2021B)

异常检测通常是根据已有的观测数据建立正常行为模型,从而将不同机制下产生的远离正常行为的数据划分为异常类,进而实现对异常状态的检测。常用的异常检测方法主要有:统计方法、信息度量方法、谱映射方法、聚类方法、近邻方法和分类方法等。 …

Android仿今日头条新闻(一)

新建一个侧边栏的文件,创建成功后直接运行。可以看到带滑动的侧边栏功能如图所示: 主体UI: 新闻UI的实现: 侧边栏: 更换一下颜色: 学习参考-浩宇开发

AI老照片生成视频

地址:AI老照片 让你的图片动起来, 老照片修复与动态化

RK3568平台(opencv篇)opencv处理图像视频

一.读取图像文件并展示 灰度图像: 灰度图需要用 8 位二进制来表示,取值范围是 0-255。用 0 表示 0(黑色), 用 255 表示 1(白色),取值越大表示该点越亮。 RGB 彩色图像:…

XPath 语法笔记

XPath 语法笔记 XPath 表达式运算符谓语(Predicates)1. 选择所有本地名称为特定名称的元素2. 选择具有特定属性的元素3. 选择属性值不等于特定值的元素4. 选择元素内容中包含特定字符串的节点5. 选择元素内容中不包含特定字符串的节点6. 选择特定命名空间…

一台docker机器如何实现构建多平台镜像

1.实现方式 想在 x86_64/amd64 的一台机器平台上,构建适用于多个平台的镜像,例如 linux/amd64、linux/arm64,根据官方文档,有三种方法可以使用: QEMU   使用 QEMU 模拟构建多平台映像是最简单的入门方法&#xff0c…

前端面试题13(API请求方法)

在前端JavaScript中,进行API请求主要可以通过几种方式来实现,最常见的是使用XMLHttpRequest(较旧的方法)、fetch(现代浏览器推荐方法)以及使用第三方库如axios或jQuery.ajax等。 1. XMLHttpRequest 这是最…

仙人掌中的SNMP检测不到服务器

登录有问题的服务器1.检测snmp localhost:~ # ps -ef|grep snmp root 55180 1 0 08:37 ? 00:00:08 /usr/sbin/snmpd -r -A -LF n /var/log/net-snmpd.log -p /var/run/snmpd.pid root 58436 53989 0 09:44 pts/0 00:00:00 grep --colorauto snmp2.检测…

linux 编译perf 工具

centos7下编译步骤: wget https://mirrors.edge.kernel.org/pub/linux/kernel/v3.x/linux-3.10.tar.gz tar -xf linux-3.10.tar.gz cd linux-3.10/tools/ yum install -y flex bison python2-devel make perf ./perf/perf top -d 1…

昇思第10天

RNN实现情感分类 二分类问题:Positive和Negative两类 步骤: 1.加载IMDB数据集 2.加载预训练词向量:预训练词向量是对输入单词的数值化表示,通过nn.Embedding层,采用查表的方式,输入单词对应词表中的index,…

【算法专题】模拟算法题

模拟算法题往往不涉及复杂的数据结构或算法,而是侧重于对特定情景的代码实现,关键在于理解题目所描述的情境,并能够将其转化为代码逻辑。所以我们在处理这种类型的题目时,最好要现在演草纸上把情况理清楚,再动手编写代…

FreeRTOS——队列集

一、队列集 一个队列只允许任务间传递的消息为 同一种数据类型 ,如果需要在任务间 传递不同数据类型的消息 时,那么就可以使用队列集 作用:用于对多个队列或信号量进行“监听”(接收或获取),其中 不管哪一…

js 使用 lodash-es 检测某个值是否是函数

import { isFunction } from lodash-eslet isA isFunction(() > {}) console.log(isA) //true https://www.lodashjs.com/docs/lodash.isFunction#_isfunctionvalue https://lodash.com/docs/4.17.15#isFunction 人工智能学习网站 https://chat.xutongbao.top

Spring框架配置进阶_自动装配(XML和注解)

Spring配置进阶 Spring 容器提供配置元数据有三种方式 XML配置文件。基于注解的配置。基于java的配置。 一、自动装配 应用程序上下文为你找出依赖项的过程,Spring会在上下文中自动查找,并自动给bean装配与其关联的属性 Spring中实现自动装配的方式有两种: XML文…

26-ARM常用汇编指令

汇编格式: label:instruction comment label:标号instruction:具体汇编指令comment:注释内容 常用段名: .text:代码段.data:初始化的数据段.bss:未初始化的数据段.ro…

Spring Boot+Vue项目从零入手

Spring BootVue项目从零入手 一、前期准备 在搭建spring bootvue项目前,我们首先要准备好开发环境,所需相关环境和软件如下: 1、node.js 检测安装成功的方法:node -v 2、vue 检测安装成功的方法:vue -V 3、Visu…