03.C1W2.Sentiment Analysis with Naïve Bayes

目录

  • Probability and Bayes’ Rule
    • Introduction
    • Probabilities
    • Probability of the intersection
  • Bayes’ Rule
    • Conditional Probabilities
    • Bayes’ Rule
    • Quiz: Bayes’ Rule Applied
  • Naïve Bayes Introduction
  • Laplacian Smoothing
  • Log Likelihood
    • Ratio of probabilities
    • Naïve Bayes’ inference
    • Log Likelihood, Part1
    • Calculating Lambda
    • Summary
  • Log Likelihood, Part 2
  • Training Naïve Bayes
  • Testing Naïve Bayes
    • Predict using Naïve Bayes
    • Testing Naïve Bayes
  • Applications of Naïve Bayes
  • Naïve Bayes Assumptions
  • Error Analysis
    • Punctuation
    • Removing Words
    • Adversarial attacks

Probability and Bayes’ Rule

概率与条件概率及其数学表达
贝叶斯规则(应用于不同领域,包括 NLP)
建立自己的 Naive-Bayes 推文分类器

Introduction

假设我们有一个推文语料库,里面包含正面和负面情感的推文:
在这里插入图片描述
某个单词例如:happy,可能出现在正面或负面情感的推文中:
在这里插入图片描述
下面我们用数学公式来表示上面的概率描述。

Probabilities

A A A表示正面的推文,则正面的推文发生的概率可以表示为:
P ( A ) = P ( P o s i t i v e ) = N p o s / N P(A)=P(Positive)=N_{pos}/N P(A)=P(Positive)=Npos/N
以上图为例:
P ( A ) = N p o s / N = 13 / 20 = 0.65 P(A)=N_{pos}/N=13/20=0.65 P(A)=Npos/N=13/20=0.65
而负面推文发生的概率可以表示为:
P ( N e g a t i v e ) = 1 − P ( P o s i t i v e ) = 0..35 P(Negative)=1-P(Positive)=0..35 P(Negative)=1P(Positive)=0..35
happy可能出现在正面或负面情感的推文中可以表示为 B B B
在这里插入图片描述
B B B发生概率可以表示为:
P ( B ) = P ( h a p p y ) = N h a p p y / N P ( B ) = 4 / 20 = 0.2 P(B) = P(happy) = N_{happy}/N\\ P(B) =4/20=0.2 P(B)=P(happy)=Nhappy/NP(B)=4/20=0.2

Probability of the intersection

下面表示正面推文且包含单词happy可图形化表示为:
在这里插入图片描述
也可以用交集的形式表示:
P ( A ∩ B ) = P ( A , B ) = 3 20 = 0.15 P(A\cap B)=P(A,B)=\cfrac{3}{20}=0.15 P(AB)=P(A,B)=203=0.15
语料库中有20条推文,其中有3条被标记为积极且同时包含单词happy
在这里插入图片描述

Bayes’ Rule

Conditional Probabilities

如果我们在三亚,并且现在是冬天,你可以猜测天气如何,那么你的猜测比只直接猜测天气要准确得多。
用推文的例子来说:
如果只考虑包含单词happy的推文(4条),而不是整个语料库,考虑这个里面包含正面推文的概率:
在这里插入图片描述
P ( A ∣ B ) = P ( P o s i t i v e ∣ “ h a p p y " ) P ( A ∣ B ) = 3 / 4 = 0.75 P(A|B)=P(Positive|“happy")\\ P(A|B)=3/4=0.75 P(AB)=P(Positive∣“happy")P(AB)=3/4=0.75
在这里插入图片描述
反过来说,只考虑正面推文,看其出现happy单词的推文概率:
在这里插入图片描述
P ( B ∣ A ) = P ( “ h a p p y ” ∣ P o s i t i v e ) P ( B ∣ A ) = 3 / 13 = 0.231 P(B | A) = P(“happy”| Positive) \\ P(B | A) = 3 / 13 = 0.231 P(BA)=P(happy”∣Positive)P(BA)=3/13=0.231
在这里插入图片描述
从上面例子可以看到:条件概率可以被解释为已知事件A已经发生的情况下,结果B发生的概率,或者从集合A中查看一个元素,它同时属于集合B的概率。
Probability of B, given A happened
Looking at the elements of set A, the chance that one also belongs to set B
在这里插入图片描述
P ( P o s i t i v e ∣ “ h a p p y " ) = P ( P o s i t i v e ∩ “ h a p p y " ) P ( “ h a p p y " ) P(Positive|“happy")=\cfrac{P(Positive\cap “happy")}{P(“happy")} P(Positive∣“happy")=P(happy")P(Positivehappy")

Bayes’ Rule

使用条件概率推导贝叶斯定理
同理:
P ( P o s i t i v e ∣ “ h a p p y " ) = P ( P o s i t i v e ∩ “ h a p p y " ) P ( “ h a p p y " ) P(Positive|“happy")=\cfrac{P(Positive\cap “happy")}{P(“happy")} P(Positive∣“happy")=P(happy")P(Positivehappy")
P ( “ h a p p y " ∣ P o s i t i v e ) = P ( “ h a p p y " ∩ P o s i t i v e ) P ( P o s i t i v e ) P(“happy"|Positive)=\cfrac{P( “happy"\cap Positive)}{P(Positive)} P(happy"∣Positive)=P(Positive)P(happy"Positive)
上面两个式子的分子表示的数量是一样的。
有了以上公式则可以推导贝叶斯定理。
P ( P o s i t i v e ∣ “ h a p p y " ) = P ( “ h a p p y " ∣ P o s i t i v e ) × P ( P o s i t i v e ) P ( “ h a p p y " ) P(Positive|“happy")=P(“happy"|Positive)\times\cfrac{P(Positive)}{P(“happy")} P(Positive∣“happy")=P(happy"∣Positive)×P(happy")P(Positive)
通用形式为:
P ( X ∣ Y ) = P ( Y ∣ X ) × P ( X ) P ( Y ) P(X|Y)=P(Y|X)\times \cfrac{P(X)}{P(Y)} P(XY)=P(YX)×P(Y)P(X)

Quiz: Bayes’ Rule Applied

Suppose that in your dataset, 25% of the positive tweets contain the word ‘happy’. You also know that a total of 13% of the tweets in your dataset contain the word ‘happy’, and that 40% of the total number of tweets are positive. You observe the tweet: '‘happy to learn NLP’. What is the probability that this tweet is positive?
A: P(Positive | “happy” ) = 0.77
B: P(Positive | “happy” ) = 0.08
C: P(Positive | “happy” ) = 0.10
D: P(Positive | “happy” ) = 1.92
答案:A

Naïve Bayes Introduction

学会使用Naïve Bayes来进行二分类(使用概率表)

Naïve Bayes for Sentiment Analysis

假设有以下语料:
在这里插入图片描述
按C1W1中提到方法提取词库,并统计正负面词频:
在这里插入图片描述

P ( w i ∣ c l a s s ) P(w_i|class) P(wiclass)

将类别中每个单词的频率除以它对应的类别中单词的总数。
例如:对于单词"I",正面类别的条件概率将是3/13:
p ( I ∣ P o s ) = 3 13 = 0.24 p(I|Pos)=\cfrac{3}{13}=0.24 p(IPos)=133=0.24
对于负面类别中的单词"I",可以得到3/12:
p ( I ∣ N e g ) = 3 12 = 0.25 p(I|Neg)=\cfrac{3}{12}=0.25 p(INeg)=123=0.25
将以上内容保存为表(because的Neg概率不太对,应该是0):
在这里插入图片描述
可以看到有很多单词(中性词)在表中的Pos和Neg的值大约相等(Pos≈Neg),例如:I、am、learning、NLP。
这些具有相等概率的单词对情感没有任何贡献。
而单词happy、sad、not的Pos和Neg的值差异很大,这些词对于确定推文的情感具有很大影响,绿色是积极影响,紫色是负面影响。
对于单词because,其 p ( I ∣ N e g ) = 0 12 = 0 p(I|Neg)=\cfrac{0}{12}=0 p(INeg)=120=0

在这里插入图片描述
这情况在计算贝叶斯概率的时候会出现分母为0的情况,为避免这个情况发生,可以引入平滑处理。

Naïve Bayes

假如有以下推文:
I am happy today; I am learning.
按上面的计算方式得到词表以及其Pos和Neg的概率值:
在这里插入图片描述
使用以下公式计算示例推文的情感:
∏ i = 1 m P ( w i ∣ p o s ) P ( w i ∣ n e g ) \prod_{i=1}^m\cfrac{P(w_i|pos)}{P(w_i|neg)} i=1mP(wineg)P(wipos)
就是计算推文每个单词的第二列比上第三列,然后连乘。
示例推文today不在词表中,忽略,其他单词带入公式:
0.20 0.20 × 0.20 0.20 × 0.14 0.10 × 0.20 0.20 × 0.20 0.20 × 0.10 0.10 = 0.14 0.10 = 1.4 > 1 \cfrac{0.20}{0.20}\times\cfrac{0.20}{0.20}\times\cfrac{0.14}{0.10}\times\cfrac{0.20}{0.20}\times\cfrac{0.20}{0.20}\times\cfrac{0.10}{0.10}=\cfrac{0.14}{0.10}=1.4>1 0.200.20×0.200.20×0.100.14×0.200.20×0.200.20×0.100.10=0.100.14=1.4>1
可以看到,中性词对预测结果没有任何作用,最后结果大于1,表示示例推文是正面的。

Laplacian Smoothing

Laplacian Smoothing主要用于以下目的:
避免零概率问题:在统计语言模型中,某些词或词序列可能从未在训练数据中出现过,导致其概率为零。拉普拉斯平滑通过为所有可能的事件分配一个非零概率来解决这个问题。
概率分布估计:拉普拉斯平滑提供了一种简单有效的方法来估计概率分布,即使在数据不完整或有限的情况下。
平滑处理:它通过为所有可能的事件添加一个小的常数(通常是1),来平滑概率分布,从而减少极端概率值的影响。
提高模型的泛化能力:通过避免概率为零的情况,拉普拉斯平滑有助于提高模型对未见数据的泛化能力。
简化计算:拉普拉斯平滑提供了一种简单的方式来调整概率,使得计算和实现相对容易。

Laplacian Smoothing

计算给定类别下一个词的条件概率的表达式是词在语料库中出现的频率:
P ( w i ∣ c l a s s ) = f r e q ( w i , c l a s s ) N c l a s s c l a s s ∈ { P o s i t i v e , N e g a t i v e } P(w_i|class)=\cfrac{freq(w_i,class)}{N_{class}}\quad class\in\{Positive,Negative\} P(wiclass)=Nclassfreq(wi,class)class{Positive,Negative}
其中 N c l a s s N_{class} Nclass是frequency of all words in class
加入平滑项后公式写为:
P ( w i ∣ c l a s s ) = f r e q ( w i , c l a s s ) + 1 N c l a s s + V c l a s s P(w_i|class)=\cfrac{freq(w_i,class)+1}{N_{class}+V_{class}} P(wiclass)=Nclass+Vclassfreq(wi,class)+1

V c l a s s V_{class} Vclass是number of unique words in class
分子项+1避免了概率为0的情况,但是会导致总概率不等于1的情况,为了避免这个情况,在分母中加了 V c l a s s V_{class} Vclass

Introducing P ( w i ∣ c l a s s ) P(w_i|class) P(wiclass) with smoothing

使用之前的例子。
在这里插入图片描述
上表中共有8个不同单词, V = 8 V=8 V=8
对于单词I则有:
P ( I ∣ P o s ) = 3 + 1 13 + 8 = 0.19 P ( I ∣ N e g ) = 3 + 1 12 + 8 = 0.20 P(I|Pos)=\cfrac{3+1}{13+8}=0.19\\ P(I|Neg)=\cfrac{3+1}{12+8}=0.20 P(IPos)=13+83+1=0.19P(INeg)=12+83+1=0.20
同理可以计算出其他单词平滑厚度结果:
在这里插入图片描述
虽然结果已经四舍五入,但是两列概率值总和还是为1

Log Likelihood

Ratio of probabilities

根据之前讲的内容,我们知道每个单词可以按其Pos和Neg的值的差异分为三类,正面、负面和中性词。
我们把这个差异用下面公式表示:
在这里插入图片描述
然后,我们可以计算上面概率表中的ratio(吐槽一下,这里because的概率不知道怎么搞的老是变来变去)

在这里插入图片描述
ratio取值与分类的关系很简单:
在这里插入图片描述

Naïve Bayes’ inference

下面给出完整的朴素贝叶斯二元分类公式:
P ( p o s ) P ( n e g ) ∏ i = 1 m P ( w i ∣ p o s ) P ( w i ∣ n e g ) > 1 c l a s s ∈ { p o s , n e g } w → Set of m words in a tweet \cfrac{P(pos)}{P(neg)}\prod_{i=1}^m\cfrac{P(w_i|pos)}{P(w_i|neg)}>1\quad class\in\{pos,neg\}\quad w\rightarrow\text{Set of m words in a tweet} P(neg)P(pos)i=1mP(wineg)P(wipos)>1class{pos,neg}wSet of m words in a tweet
左边一项其实是先验概率,如果数据集中正负样本差不多,则该项比值为1,可以忽略。这个比率可以看作是模型在没有任何其他信息的情况下,倾向于认为推文是正面或负面情感的初始信念。;
右边一项之前已经推导过。这是条件概率的乘积。对于推文中的每个词 w i , i = 1 , 2 , ⋯ , m w_i,i=1,2,\cdots,m wi,i=1,2,,m(m 是推文中的词的数量),这个乘积计算了在正面情感条件下该词出现的概率与在负面情感条件下该词出现的概率的比值。这个乘积考虑了推文中所有词的证据
如果这个乘积大于1,那么模型认为推文更可能是正面情感;如果小于1,则更可能是负面情感。

Log Likelihood, Part1

上面的朴素贝叶斯二元分类公式使用了连乘的形式,对于计算上说,小数的连乘会使得计算出现underflow,根据对数性质:
log ⁡ ( a ∗ b ) = log ⁡ ( a ) + log ⁡ ( b ) \log(a*b)=\log(a)+\log(b) log(ab)=log(a)+log(b)
可以将连乘转化成为连加的形式,同样对公式求对数得到:
log ⁡ ( P ( p o s ) P ( n e g ) ∏ i = 1 m P ( w i ∣ p o s ) P ( w i ∣ n e g ) ) = log ⁡ P ( p o s ) P ( n e g ) + ∑ i = 1 m log ⁡ P ( w i ∣ p o s ) P ( w i ∣ n e g ) \log\left(\cfrac{P(pos)}{P(neg)}\prod_{i=1}^m\cfrac{P(w_i|pos)}{P(w_i|neg)}\right)=\log\cfrac{P(pos)}{P(neg)}+\sum_{i=1}^m\log\cfrac{P(w_i|pos)}{P(w_i|neg)} log(P(neg)P(pos)i=1mP(wineg)P(wipos))=logP(neg)P(pos)+i=1mlogP(wineg)P(wipos)
也就是:log prior + log likelihood
我们将第一项成为: λ \lambda λ

Calculating Lambda

根据上面的内容计算实例推文的lambda:
tweet: I am happy because I am learning.
先计算出概率表:
在这里插入图片描述
然后根据公式计算出每个单词的 λ \lambda λ
λ ( w ) = log ⁡ P ( w ∣ p o s ) P ( w ∣ n e g ) \lambda(w)=\log\cfrac{P(w|pos)}{P(w|neg)} λ(w)=logP(wneg)P(wpos)
例如对于第一个单词:
λ ( I ) = log ⁡ 0.05 0.05 = log ⁡ ( 1 ) = 0 \lambda(I)=\log\cfrac{0.05}{0.05}=\log(1)=0 λ(I)=log0.050.05=log(1)=0
happy:
λ ( h a p p y ) = log ⁡ 0.09 0.01 = log ⁡ ( 9 ) = 2.2 \lambda(happy)=\log\cfrac{0.09}{0.01}=\log(9)=2.2 λ(happy)=log0.010.09=log(9)=2.2
以此类推:
在这里插入图片描述
可以看到,这里我们也可以根据 λ \lambda λ值来判断正负面和中性词。

Summary

对于正负面、中性词,这里给出两种判断方式(Word sentiment):
r a t i o ( w ) = P ( w ∣ p o s ) P ( w ∣ n e g ) ratio(w)=\cfrac{P(w|pos)}{P(w|neg)} ratio(w)=P(wneg)P(wpos)
λ ( w ) = log ⁡ P ( w ∣ p o s ) P ( w ∣ n e g ) \lambda(w)=\log\cfrac{P(w|pos)}{P(w|neg)} λ(w)=logP(wneg)P(wpos)
这里要明白,为什么要使用第二种判断方式:避免underflow(下溢)

Log Likelihood, Part 2

有了 λ \lambda λ值,接下来可以计算对数似然,对于以下推文:
I am happy because I am learning.
其每个单词 λ \lambda λ值在上面的图中,整个推文的对数似然值就是做累加:
0 + 0 + 2.2 + 0 + 0 + 0 + 1.1 = 3.3 0+0+2.2+0+0+0+1.1=3.3 0+0+2.2+0+0+0+1.1=3.3
从前面我们可以知道,概率比值以及对数似然的值如何区分正负样本:
在这里插入图片描述
在这里插入图片描述
这里的推文对数似然的值为3.3,是一个正面样本。

Training Naïve Bayes

这里不用GD,只需简单五步完成训练模型。

Step 0: Collect and annotate corpus
在这里插入图片描述

Step 1: Preprocess
包括:
Lowercase
Remove punctuation, urls, names
Remove stop words
Stemming
Tokenize sentences
在这里插入图片描述

Step 2: Word count
在这里插入图片描述

Step 3: P ( w ∣ c l a s s ) P(w|class) P(wclass)
这里 V c l a s s = 6 V_{class}=6 Vclass=6
根据公式:
f r e q ( w , c l a s s ) + 1 N c l a s s + V c l a s s \cfrac{freq(w,class)+1}{N_{class}+V_{class}} Nclass+Vclassfreq(w,class)+1
计算概率表:
在这里插入图片描述

Step 4: Get lambda
根据公式:
λ ( w ) = log ⁡ P ( w ∣ p o s ) P ( w ∣ n e g ) \lambda(w)=\log\cfrac{P(w|pos)}{P(w|neg)} λ(w)=logP(wneg)P(wpos)
得到:
在这里插入图片描述

Step 5: Get the log prior
估计先验概率,分别计算:
D p o s D_{pos} Dpos = Number of positive tweets
D n e g D_{neg} Dneg = Number of negative tweets
log prior = log ⁡ D p o s D n e g \text{log prior}=\log\cfrac{D_{pos}}{D_{neg}} log prior=logDnegDpos
注意:
If dataset is balanced, D p o s = D n e g D_{pos}=D_{neg} Dpos=Dneg and log prior = 0 \text{log prior}=0 log prior=0.
对应正负样本不均衡的数据库,先验概率不能忽略

总的来看是六步:

  1. Get or annotate a dataset with positive and negative tweets
  2. Preprocess the tweets: p r o c e s s _ t w e e t ( t w e e t ) ➞ [ w 1 , w 2 , w 3 , . . . ] process\_tweet(tweet) ➞ [w_1 , w_2 , w_3 , ...] process_tweet(tweet)[w1,w2,w3,...]
  3. Compute freq(w, class),注意要引入拉普拉斯平滑
  4. Get P(w | pos), P(w | neg)
  5. Get λ(w)
  6. Compute log prior = log(P(pos) / P(neg))

Testing Naïve Bayes

Predict using Naïve Bayes

进行之前的步骤,我们完成了词典中每个单词对数似然λ(w)的计算,并形成了字典。
在这里插入图片描述
假设我们数据集中正负样本基本均衡,可以忽略对数先验概率( log prior = 0 \text{log prior}=0 log prior=0
对于推文:
[I, pass, the , NLP, interview]
计算其对数似然为:
s c o r e = − 0.01 + 0.5 − 0.01 + 0 + log prior = 0.48 score = -0.01+0.5-0.01+0+\text{log prior}=0.48 score=0.01+0.50.01+0+log prior=0.48
其中interview为未知词,忽略。
也就是是预测值为0.48>0,该推文是正面的。

Testing Naïve Bayes

假设有验证集数据: X v a l X_{val} Xval和标签 Y v a l Y_{val} Yval
计算 λ \lambda λ和log prior,对于未知词要忽略(也就相当于看做是中性词)
计算 s c o r e = p r e d i c t ( X v a l , λ , log prior ) score=predict(X_{val},\lambda,\text{log prior}) score=predict(Xval,λ,log prior)
判断推文情感: p r e d = s c o r e > 0 pred = score>0 pred=score>0
在这里插入图片描述

计算模型正确率:
1 m ∑ i = 1 m ( p r e d i = = Y v a l i ) \cfrac{1}{m}\sum_{i=1}^m(pred_i==Y_{val_i}) m1i=1m(predi==Yvali)
在这里插入图片描述

Applications of Naïve Bayes

除了Sentiment analysis
Naïve Bayes常见应用还包括:
● Author identification
如果有两个大型文集,分别由不同的作者撰写,可以训练一个模型来识别新文档是由哪一位写的。
例如:你手头上有一些莎士比亚的作品和海明威的作品,你可以计算每个词的Lambda值,以预测个新词被莎士比亚使用的可能性,或者被海明威使用的可能性。
在这里插入图片描述
●Spam filtering:
在这里插入图片描述

● Information retrieval
朴素贝叶斯最早的应用之一是在数据库中根据查询中的关键字将文档筛选为相关和不相关的文档。
这里只需要计算文档的对数似然,因为先验是未知的。

在这里插入图片描述
然后根据阈值判断是否查询文档:
在这里插入图片描述

● Word disambiguation
假设单词在文中有两种含义,词义消岐可以判断单词在上下文的含义。
在这里插入图片描述
bank有河岸和银行两种意思。
在这里插入图片描述

Naïve Bayes Assumptions

朴素贝叶斯是一个非常简单的模型,它不需要设置任何自定义参数,因为它对数据做了一些假设。
● Independence
● Relative frequency in corpus
对于独立性,朴素贝叶斯假设文本中的词语是彼此独立的。看下面例子:
“It is sunny and hot in the Sahara desert.”
单词sunny 和hot 是有关联性的,两个词语在一起可能与其所描述的事物有关,例如:海滩、甜点等。
朴素贝叶斯独立性的假设可能会导致对个别词语的条件概率估计不准确。
在这里插入图片描述
例如上图中,winter的概率明显要高于其他单词,但朴素贝叶斯则认为四个单词概率一样。
另外一个问题是依赖于训练数据集的分布。
理想的数据集中应该包含与随机样本相同比例的积极和消极推文,但是实际的推文中,正面推文要比负面推文出现频率要更高。这样训练出来的模型会被戴上有色眼镜。

Error Analysis

造成预测失败的原因有三种:
● Removing punctuation and stop words
● Word order
● Adversarial attacks

Punctuation

Tweet: My beloved grandmother : (
经过标点处理后:processed_tweet: [belov, grandmoth]
我亲爱的祖母,本来是正面推文,但是后面代表悲伤的emoj被过滤掉了。如果换成感叹号那就不一样。

Removing Words

Tweet: This is not good, because your attitude is not even close to being nice.
去掉停用词后:processed_tweet: [good, attitude, close, nice]

Tweet: I am happy because I do not go.
Tweet: I am not happy because I did go.
上面一个是正面的(I am happy),后面一个是负面的(I am not happy)
否定词和词序会导致预测错误。

Adversarial attacks

主要是Sarcasm, Irony and Euphemisms(讽刺、反讽和委婉语),天才Sheldon都不能李姐!!!
Tweet: This is a ridiculously powerful movie. The plot was gripping and I cried right through until the ending!
processed_tweet: [ridicul, power, movi, plot, grip, cry, end]
原文表达是正面的: 这是一部震撼人心的电影。情节扣人心弦,我一直哭到结局!
但处理后的单词却是负面的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/40521.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

npm 淘宝镜像证书过期,错误信息 Could not retrieve https://npm.taobao.org/mirrors/node/latest

更换 npm 证书 问题描述报错原因更换步骤1 找到 nvm 安装目录2 发现证书过期3 更换新地址4 保存后,重新安装成功 问题描述 在使用 nvm 安装新版本时,未成功,出现报错: Could not retrieve https://npm.taobao.org/mirrors/node/l…

【postgresql】表操作

创建表 (CREATE TABLE): CREATE TABLE table_name ( column1 data_type constraint,column2 data_type constraint,... ); 插入数据 (INSERT INTO): INSERT INTO table_name (column1, column2, ...) VALUES (value1, value2, ...); 查询数据 (SELECT): SELECT column1, c…

火山引擎数据飞轮实践:在电商场景中,如何建设全链路数据血缘?

数据作为新型生产要素,正支撑企业的数智化转型。但企业数字化建设也存在管理成本高、数据产品使用门槛高、数据资产价值不够的问题,其原因在于业务和数据之间没有形成双向良性驱动。 结合新时代企业数字化转型需求,火山引擎基于字节跳动十余…

IC烧录员-带着工程师的梦想远航!

如果说软件工程师是代码程序的创造者,那么IC烧录员就是把工程师们辛苦敲代码,日夜辛劳的成果烧录到芯片里面的实践者,是他们,让工程师们的梦想运用到实践中,是他们带着工程师的梦想远航,他们的薪酬或许没有…

第一节-k8s架构图

一个Deployment,可以由多个不同Node下的Pod组成,每个Pod又由多个Container组成。 区分Deployment是用Labels(key:value),区分Pod是用PodName,区分Container是用ContainerName。 一个Node可以包含多个不同Deployment中的pod&…

MySQL-作业1

一、数据库 1、登陆数据库 2、创建数据库zoo 3、修改数据库zoo字符集为gbk 4、选择当前数据库为zoo 5、查看创建数据库zoo信息 6、删除数据库zoo 二、创建表 1、创建一个名称为db_system的数据库 2、在该数据库下创建两张表,具体要求如下: 员工表 user …

米国政府呼吁抛弃 C 和 C++

在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「C的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!! 很多观点认为C 或 C永远不可被…

聚鼎装饰画:装饰画生意现在做晚吗

在这个充满机遇与挑战的时代,涉足装饰画领域是否为时已晚?许多人心中或许有着这样的疑问。事实上,尽管市场上的竞争者众多,但正如“朝霞映满天,别样红”一般,每个行业的黄金时期都有所不同,关键在于我们能…

在线JSON可视化工具--改进

先前发布了JSON格式化可视化在线工具,提供图形化界面显示结构关系功能,并提供JSON快速格式化、JSON压缩、快捷复制、下载导出、对存在语法错误的地方能明确显示,而且还支持全屏,极大扩大视野区域。 在线JSON格式化可视化工具 但…

硅纪元AI应用推荐 | 国产创作引擎即梦AI助力创作者探索创作新境界

“硅纪元AI应用推荐”栏目,为您精选最新、最实用的人工智能应用,无论您是AI发烧友还是新手,都能在这里找到提升生活和工作的利器。与我们一起探索AI的无限可能,开启智慧新时代! 在人工智能快速发展的今天,各…

怎么还有人分不清路由器、交换机、光猫、WiFi……你真的都了解吗?

号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部 下午好,我的网工朋友。 讲某个具体技术,说不定你头头是道,但关于路由器、交换机、光猫、WiFi的知识细节&…

自然语言处理领域介绍及其发展历史

自然语言处理领域介绍及其发展历史 1 NLP2 主要任务3 主要的方法1 基于规则的方法(1950-1980)2 基于统计的方法(传统的机器学习的方法)3 Connectionist approach(Neural networks) 1 NLP 自动的理解人类语…

新能源组合灶,一灶两用(电燃灶+电陶炉),电生明火,无需燃料

在科技日新月异的今天,厨房电器的创新不断为我们的生活带来便捷与惊喜。华火新能源电燃灶,以其独特的设计和卓越的性能,成为未来厨房的首选,为您打造全新的烹饪体验。 中国人的烹饪文化源远流长,讲究火候的掌控和明火烹…

PHP电商系统开发指南高级技巧

开发高级 php 电商系统所需的技巧包括:数据库优化:使用索引、规范化数据结构和缓存机制。性能优化:启用页面缓存、优化图像和使用 cdn。购物车管理:使用会话或数据库存储数据,实现实时更新和弃单恢复。支付集成&#x…

[vue3+js]实现3d旋转效果

1. 实现效果图&#xff1a; 2.实现代码&#xff1a; css: <style lang"scss" scoped>.bottomContainer{width: 1200px;height: 400px;display: flex;justify-content: center;position: relative;margin:200px auto;align-items: center;// background-image…

既美观又方便的后台框架谁需要?进来就对了。

一套既美观又方便的后台框架可以大大幅节约开发时间和成本。 我们来一起看看几个明朗大气的管理控制台页面。 本文档会持续更新 模板编号&#xff1a;翠花_001模板编号&#xff1a;翠花_002模板编号&#xff1a;翠花_003

nginx的匹配及重定向

一、nginx的匹配&#xff1a; nginx中location的优先级和匹配方式&#xff1a; 1.精确匹配&#xff1a;location / 对字符串进行完全匹配&#xff0c;必须完全符合 2.正则匹配&#xff1a;location ^~ ^~ 前缀匹配&#xff0c;以什么为开头 ~区分大小写的匹配 ~* 不区分…

IDEA:插件和配置推荐(2024版)

文章目录 一、插件1.1 主题1.2 代码缩略图1.3 Maven插件2.4 彩虹括号2.5 翻译插件2.6 图标插件2.7 MyBatis插件2.8 阿里巴巴开发规范 二、全局配置2.1 主题2.2 字符编码2.3 注释颜色2.4 自动导包2.5 鼠标控制界面大小 三、新项目设置3.1 Maven3.2 SDK 四、恢复初始化 一、插件 …

SpringBoot 多数据源配置

目录 一. 引入maven依赖包 二. 配置yml 三、创建 xml 分组文件 四、切换数据源 一. 引入maven依赖包 <dependency><groupId>com.baomidou</groupId><artifactId>dynamic-datasource-spring-boot-starter</artifactId><version>3.6.1&…