DPO
-
核心思想:直接使用偏好数据进行策略优化,省去
reward
模型策略优化。 -
技术背景知识:
首先给定prompt x,生成两个答案 ( y 1 , y 2 ) Π S F T ( y ∣ x ) (y_1,y_2)~\Pi^{SFT}(y|x) (y1,y2) ΠSFT(y∣x) ,并通过人工标注对比 y 1 , y 2 y_1,y_2 y1,y2 ,获得偏好结果(preference) y w ≻ y l ∣ x y_w\succ y_l|x yw≻yl∣x,其中 w w w和 l l l表示
win
和lose
。引入奖励模型 r r r , y 1 > y 2 y_1 > y_2 y1>y2 的概率可以表示为
p ( y 1 > y 2 ) = r ∗ ( x , y 1 ) r ∗ ( x , y 1 ) + r ∗ ( x , y 2 ) p(y_1 > y_2) = \frac{r^*(x,y_1)}{r^*(x,y_1)+ r^*(x,y_2)} p(y1>y2)=r∗(x,y1)+r∗(x,y2)r∗(x,y1)
为使得奖励函数均为正数,引入Bradley-Terry
模型。-
Bradley-Terry:
p ∗ ( y w ≻ y l ∣ x ) = e x p ( r ∗ ( x , y 1 ) ) e x p ( r ∗ ( x , y 1 ) ) + e x p ( r ∗ ( x , y 2 ) ) p^{*}(y_w\succ y_l|x) = \frac{exp(r^*(x,y_1))}{exp(r^*(x,y_1))+ exp(r^*(x,y_2))} p∗(yw≻yl∣x)=exp(r∗(x,y1))+exp(r∗(x,y2))exp(r∗(x,y1))
交叉熵:令 a x = e x p ( r ∗ ( x , y 1 ) ) a_x = exp(r^*(x,y_1)) ax=exp(r∗(x,y1)), a y = e x p ( r ∗ ( x , y 2 ) ) a_y = exp(r^*(x,y_2)) ay=exp(r∗(x,y2))
L o s s = − E ( a x , a y ) ∼ D [ l n a x a x + a y ] = − E ( x , y w , y l ) ∼ D [ l n e x p ( r ∗ ( x , y w ) ) e x p ( r ∗ ( x , y w ) ) + e x p ( r ∗ ( x , y l ) ) ] = − E ( x , y w , y l ) ∼ D [ l n 1 1 + e x p ( r ∗ ( x , y l ) − r ∗ ( x , y w ) ) ] = − E ( x , y w , y l ) ∼ D [ l n σ ( r ∗ ( x , y w ) − r ∗ ( x , y l ) ) ] Loss = -E_{(a_x,a_y)\sim D}[ln\frac{a_x}{a_x+a_y}] \\ = - E_{(x,y_w,y_l)\sim D}[ln\frac{exp(r^*(x,y_w))}{exp(r^*(x,y_w))+exp(r^*(x,y_l))}] \\ = - E_{(x,y_w,y_l)\sim D}[ln\frac{1}{1+exp(r^*(x,y_l)-r^*(x,y_w))}] \\ = - E_{(x,y_w,y_l)\sim D}[ln \sigma(r^*(x,y_w) -r^*(x,y_l))] \\ Loss=−E(ax,ay)∼D[lnax+ayax]=−E(x,yw,yl)∼D[lnexp(r∗(x,yw))+exp(r∗(x,yl))exp(r∗(x,yw))]=−E(x,yw,yl)∼D[ln1+exp(r∗(x,yl)−r∗(x,yw))1]=−E(x,yw,yl)∼D[lnσ(r∗(x,yw)−r∗(x,yl))] -
KL 散度:
K L ( P ∣ ∣ Q ) = ∑ x ∈ X P ( X ) l o g ( P ( X ) Q ( X ) ) KL(P||Q) = \sum_{x\in X}P(X)log(\frac{P(X)}{Q(X)}) KL(P∣∣Q)=x∈X∑P(X)log(Q(X)P(X))
P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 分别是数据真实分布和模型预测分布。
-
-
DPO
目标函数:获取更多的奖励,并尽可能保证与基准模型一致。
m a x π E x ∈ X , y ∈ π [ r ( x , y ) ] − β ⋅ D K L [ π ( y ∣ x ) ∣ ∣ π r e f ( y ∣ x ) ] = m a x π E x ∈ X , y ∈ π [ r ( x , y ) ] − E x ∈ X , y ∈ π [ β ⋅ l o g π ( y ∣ x ) π r e f ( y ∣ x ) ] = m a x π E x ∈ X , y ∈ π [ r ( x , y ) − β ⋅ l o g π ( y ∣ x ) π r e f ( y ∣ x ) ] = m a x π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π r e f ( y ∣ x ) − 1 β r ( x , y ) ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π r e f ( y ∣ x ) − l o g e x p ( 1 β r ( x , y ) ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) 1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) − l o g Z ( x ) ] \underset{\pi}{max} E_{x\in X, y \in \pi}[r(x,y)] - \beta·\mathbb{D}_{KL}[\pi(y|x) || \pi_{ref}(y|x)] \\ = \underset{\pi}{max} E_{x\in X, y \in \pi}[r(x,y)] - E_{x\in X, y \in \pi}[\beta·log \frac{\pi(y|x)}{\pi_{ref}(y|x)}] \\ = \underset{\pi}{max} E_{x\in X, y \in \pi}[r(x,y) - \beta·log \frac{\pi(y|x)}{\pi_{ref}(y|x)}] \\ = \underset{\pi}{max} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi_{ref}(y|x)}- \frac{1}{\beta}r(x,y))] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi_{ref}(y|x)}- log \ \ exp(\frac{1}{\beta}r(x,y))] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))} ] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))} - log \ \ Z(x) ] \\ πmaxEx∈X,y∈π[r(x,y)]−β⋅DKL[π(y∣x)∣∣πref(y∣x)]=πmaxEx∈X,y∈π[r(x,y)]−Ex∈X,y∈π[β⋅logπref(y∣x)π(y∣x)]=πmaxEx∈X,y∈π[r(x,y)−β⋅logπref(y∣x)π(y∣x)]=πmaxEx∈X,y∈π[logπref(y∣x)π(y∣x)−β1r(x,y))]=πminEx∈X,y∈π[logπref(y∣x)π(y∣x)−log exp(β1r(x,y))]=πminEx∈X,y∈π[logπref(y∣x)⋅exp(β1r(x,y))π(y∣x)]=πminEx∈X,y∈π[logZ(x)1πref(y∣x)⋅exp(β1r(x,y))π(y∣x)−log Z(x)]
令 Z ( x ) Z(x) Z(x) 表示如下:
Z ( x ) = ∑ y π r e f ( y ∣ x ) e x p ( 1 β r ( x , y ) ) Z(x) = \underset{y}{\sum} \pi_{ref}(y|x) exp(\frac{1}{\beta}r(x,y) ) Z(x)=y∑πref(y∣x)exp(β1r(x,y))
令:
1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) = π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) ∑ y π r e f ( y ∣ x ) e x p ( 1 β r ( x , y ) ) = π ∗ ( y ∣ x ) \frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y)) = \frac{\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))}{\underset{y}{\sum} \pi_{ref}(y|x) exp(\frac{1}{\beta}r(x,y) )} \\ = \pi^*(y|x) Z(x)1πref(y∣x)⋅exp(β1r(x,y))=y∑πref(y∣x)exp(β1r(x,y))πref(y∣x)⋅exp(β1r(x,y))=π∗(y∣x)
接下来继续对``dpo` 目标函数进行化简:
m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) 1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) − l o g Z ( x ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π ∗ ( y ∣ x ) − l o g Z ( x ) ] \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))} - log \ \ Z(x) ] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi^*(y|x)} - log \ \ Z(x) ] \\ πminEx∈X,y∈π[logZ(x)1πref(y∣x)⋅exp(β1r(x,y))π(y∣x)−log Z(x)]=πminEx∈X,y∈π[logπ∗(y∣x)π(y∣x)−log Z(x)]
由于 Z ( x ) Z(x) Z(x) 表达式与 π \pi π 不相关,优化可以直接省去。
m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π ∗ ( y ∣ x ) − l o g Z ( x ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π ∗ ( y ∣ x ) ] = m i n π E x ∼ D [ D K L ( π ( y ∣ x ) ∣ ∣ π ∗ ( y ∣ x ) ) ] \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi^*(y|x)} - log \ \ Z(x) ] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi^*(y|x)} ] \\ = \underset{\pi}{min} E_{x \sim D}[\mathbb{D}_{KL}(\pi(y|x) || \pi^*(y|x))] \\ πminEx∈X,y∈π[logπ∗(y∣x)π(y∣x)−log Z(x)]=πminEx∈X,y∈π[logπ∗(y∣x)π(y∣x)]=πminEx∼D[DKL(π(y∣x)∣∣π∗(y∣x))]
当 目标函数最小化,也就是 D K L \mathbb{D}_{KL} DKL 最小化,所满足的条件为:
π ( y ∣ x ) = π ∗ ( y ∣ x ) = 1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) \pi(y|x) = \pi^*(y|x) = \frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y)) π(y∣x)=π∗(y∣x)=Z(x)1πref(y∣x)⋅exp(β1r(x,y))
反解奖励函数 r ( x , y ) r(x,y) r(x,y)
r ( x , y ) = β π ( y ∣ x ) π r e f ( y ∣ x ) + β ⋅ l n Z ( x ) r(x,y) = \beta \frac{\pi(y|x)}{\pi_{ref}(y|x)} + \beta · ln \Z(x) r(x,y)=βπref(y∣x)π(y∣x)+β⋅lnZ(x)
求解奖励函数隐式表达后,带入Bradley-Terry
交叉熵函数:
L o s s = − E ( x , y w , y l ) ∼ D [ l n σ ( r ∗ ( x , y w ) − r ∗ ( x , y l ) ) ] = − E ( x , y w , y l ) ∼ D [ l n σ ( β l o g π ( y w ∣ x ) π r e f ( y w ∣ x ) − β l o g π ( y l ∣ x ) π r e f ( y l ∣ x ) ) ] Loss = - E_{(x,y_w,y_l)\sim D}[ln \sigma(r^*(x,y_w) -r^*(x,y_l))] \\ =- E_{(x,y_w,y_l)\sim D}[ln \sigma(\beta log\frac{\pi(y_w|x)}{\pi_{ref}(y_w|x)} - \beta log \frac{\pi(y_l|x)}{\pi_{ref}(y_l|x)})] Loss=−E(x,yw,yl)∼D[lnσ(r∗(x,yw)−r∗(x,yl))]=−E(x,yw,yl)∼D[lnσ(βlogπref(yw∣x)π(yw∣x)−βlogπref(yl∣x)π(yl∣x))]
到此,整个数学部分已推导完毕,不得不说句牛逼plus。
-
梯度表征:
将上述损失进行梯度求导
∇ θ L o s s ( π θ ; π r e f ) = − E ( x , y w , y l ) ∼ D [ β σ ( β l o g π ( y w ∣ x ) π r e f ( y w ∣ x ) − β l o g π ( y l ∣ x ) π r e f ( y l ∣ x ) ) [ ∇ θ l o g π ( y w ∣ x ) − ∇ θ l o g π ( y l ∣ x ) ] ] \nabla_\theta Loss(\pi_{\theta};\pi_{ref}) = - E_{(x,y_w,y_l)\sim D}[\beta \sigma(\beta log\frac{\pi(y_w|x)}{\pi_{ref}(y_w|x)} - \beta log \frac{\pi(y_l|x)}{\pi_{ref}(y_l|x)}) [\nabla_{\theta}log \pi(y_w|x) - \nabla_{\theta}log \pi(y_l|x) ]] ∇θLoss(πθ;πref)=−E(x,yw,yl)∼D[βσ(βlogπref(yw∣x)π(yw∣x)−βlogπref(yl∣x)π(yl∣x))[∇θlogπ(yw∣x)−∇θlogπ(yl∣x)]]
再令:
r ^ ( x , y ) = β π θ ( y ∣ x ) π r e f ( y ∣ x ) \hat{r}(x,y) = \beta \frac{\pi_{\theta}(y|x)}{\pi_{ref}(y|x)} r^(x,y)=βπref(y∣x)πθ(y∣x)
最终形式:
∇ θ L o s s ( π θ ; π r e f ) = − β E ( x , y w , y l ) ∼ D [ σ ( r ^ ∗ ( x , y w ) − r ^ ∗ ( x , y l ) ) ⏟ h i g h e r w e i g h t w h e n r e w a r d e s t i m a t e i s w r o n g [ ∇ θ l o g π ( y w ∣ x ) ⏟ i n c r e a s e l i k e l i h o o d o f y w − ∇ θ l o g π ( y l ∣ x ) ⏟ d e c r e a s e l i k e l i h o o d o f y l ] ] \nabla_\theta Loss(\pi_{\theta};\pi_{ref}) = -\beta E_{(x,y_w,y_l)\sim D}[\underbrace{\sigma(\hat{r}^*(x,y_w) -\hat{r}^*(x,y_l))}_{higher\ weight\ when\ reward\ estimate\ is\ wrong} [\underbrace{\nabla_{\theta}log \pi(y_w|x)}_{\ \ \ \ \ \ \ \ \ increase \ likelihood\ of\ y_w} - \underbrace{\nabla_{\theta}log \pi(y_l|x)}_{decrease \ likelihood \ of \ y_l} ]] ∇θLoss(πθ;πref)=−βE(x,yw,yl)∼D[higher weight when reward estimate is wrong σ(r^∗(x,yw)−r^∗(x,yl))[ increase likelihood of yw ∇θlogπ(yw∣x)−decrease likelihood of yl ∇θlogπ(yl∣x)]] -
改进方法ODPO
dpo
缺陷主要是:采用Bradley–Terry model
只给出了一个response
比另一个response
好的概率,而没有告诉我们好的程度。
odpo
核心思想: 把这个好的程度的差距信息引入到偏好的建模里,应该能带来收益,及在dpo
损失里添加margin
, 这相当于要求偏好回应
的评估分数要比非偏好回应
的评估分数大,且要大offset
值这么多。目的是:加大对靠得比较近的数据对的惩罚力度。
L o s s o d p o = − E ( x , y w , y l ) ∼ D [ l n σ ( r ∗ ( x , y w ) − r ∗ ( x , y l ) ) − δ r ] δ r = α l o g ( r ( y w ) − r ( y l ) ) Loss^{odpo}= - E_{(x,y_w,y_l)\sim D}[ln \sigma(r^*(x,y_w) -r^*(x,y_l)) - \delta_r] \\ \delta_r = \alpha \ log(r(y_w)- r(y_l)) Lossodpo=−E(x,yw,yl)∼D[lnσ(r∗(x,yw)−r∗(x,yl))−δr]δr=α log(r(yw)−r(yl))
-
相似改进方法:
IPO
KTO
都是不需要奖励模型的;