DPO算法推导

DPO

  • 核心思想:直接使用偏好数据进行策略优化,省去 reward 模型策略优化。

  • 技术背景知识:

    首先给定prompt x,生成两个答案 ( y 1 , y 2 ) Π S F T ( y ∣ x ) (y_1,y_2)~\Pi^{SFT}(y|x) (y1,y2) ΠSFT(yx) ,并通过人工标注对比 y 1 , y 2 y_1,y_2 y1,y2 ,获得偏好结果(preference) y w ≻ y l ∣ x y_w\succ y_l|x ywylx,其中 w w w l l l表示winlose

    引入奖励模型 r r r , y 1 > y 2 y_1 > y_2 y1>y2 的概率可以表示为
    p ( y 1 > y 2 ) = r ∗ ( x , y 1 ) r ∗ ( x , y 1 ) + r ∗ ( x , y 2 ) p(y_1 > y_2) = \frac{r^*(x,y_1)}{r^*(x,y_1)+ r^*(x,y_2)} p(y1>y2)=r(x,y1)+r(x,y2)r(x,y1)
    为使得奖励函数均为正数,引入Bradley-Terry 模型。

    • Bradley-Terry
      p ∗ ( y w ≻ y l ∣ x ) = e x p ( r ∗ ( x , y 1 ) ) e x p ( r ∗ ( x , y 1 ) ) + e x p ( r ∗ ( x , y 2 ) ) p^{*}(y_w\succ y_l|x) = \frac{exp(r^*(x,y_1))}{exp(r^*(x,y_1))+ exp(r^*(x,y_2))} p(ywylx)=exp(r(x,y1))+exp(r(x,y2))exp(r(x,y1))
      交叉熵:

      a x = e x p ( r ∗ ( x , y 1 ) ) a_x = exp(r^*(x,y_1)) ax=exp(r(x,y1)), a y = e x p ( r ∗ ( x , y 2 ) ) a_y = exp(r^*(x,y_2)) ay=exp(r(x,y2))
      L o s s = − E ( a x , a y ) ∼ D [ l n a x a x + a y ] = − E ( x , y w , y l ) ∼ D [ l n e x p ( r ∗ ( x , y w ) ) e x p ( r ∗ ( x , y w ) ) + e x p ( r ∗ ( x , y l ) ) ] = − E ( x , y w , y l ) ∼ D [ l n 1 1 + e x p ( r ∗ ( x , y l ) − r ∗ ( x , y w ) ) ] = − E ( x , y w , y l ) ∼ D [ l n σ ( r ∗ ( x , y w ) − r ∗ ( x , y l ) ) ] Loss = -E_{(a_x,a_y)\sim D}[ln\frac{a_x}{a_x+a_y}] \\ = - E_{(x,y_w,y_l)\sim D}[ln\frac{exp(r^*(x,y_w))}{exp(r^*(x,y_w))+exp(r^*(x,y_l))}] \\ = - E_{(x,y_w,y_l)\sim D}[ln\frac{1}{1+exp(r^*(x,y_l)-r^*(x,y_w))}] \\ = - E_{(x,y_w,y_l)\sim D}[ln \sigma(r^*(x,y_w) -r^*(x,y_l))] \\ Loss=E(ax,ay)D[lnax+ayax]=E(x,yw,yl)D[lnexp(r(x,yw))+exp(r(x,yl))exp(r(x,yw))]=E(x,yw,yl)D[ln1+exp(r(x,yl)r(x,yw))1]=E(x,yw,yl)D[l(r(x,yw)r(x,yl))]

    • KL 散度:
      K L ( P ∣ ∣ Q ) = ∑ x ∈ X P ( X ) l o g ( P ( X ) Q ( X ) ) KL(P||Q) = \sum_{x\in X}P(X)log(\frac{P(X)}{Q(X)}) KL(P∣∣Q)=xXP(X)log(Q(X)P(X))
      P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 分别是数据真实分布和模型预测分布。

  • DPO 目标函数:获取更多的奖励,并尽可能保证与基准模型一致。
    m a x π E x ∈ X , y ∈ π [ r ( x , y ) ] − β ⋅ D K L [ π ( y ∣ x ) ∣ ∣ π r e f ( y ∣ x ) ] = m a x π E x ∈ X , y ∈ π [ r ( x , y ) ] − E x ∈ X , y ∈ π [ β ⋅ l o g π ( y ∣ x ) π r e f ( y ∣ x ) ] = m a x π E x ∈ X , y ∈ π [ r ( x , y ) − β ⋅ l o g π ( y ∣ x ) π r e f ( y ∣ x ) ] = m a x π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π r e f ( y ∣ x ) − 1 β r ( x , y ) ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π r e f ( y ∣ x ) − l o g e x p ( 1 β r ( x , y ) ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) 1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) − l o g Z ( x ) ] \underset{\pi}{max} E_{x\in X, y \in \pi}[r(x,y)] - \beta·\mathbb{D}_{KL}[\pi(y|x) || \pi_{ref}(y|x)] \\ = \underset{\pi}{max} E_{x\in X, y \in \pi}[r(x,y)] - E_{x\in X, y \in \pi}[\beta·log \frac{\pi(y|x)}{\pi_{ref}(y|x)}] \\ = \underset{\pi}{max} E_{x\in X, y \in \pi}[r(x,y) - \beta·log \frac{\pi(y|x)}{\pi_{ref}(y|x)}] \\ = \underset{\pi}{max} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi_{ref}(y|x)}- \frac{1}{\beta}r(x,y))] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi_{ref}(y|x)}- log \ \ exp(\frac{1}{\beta}r(x,y))] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))} ] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))} - log \ \ Z(x) ] \\ πmaxExX,yπ[r(x,y)]βDKL[π(yx)∣∣πref(yx)]=πmaxExX,yπ[r(x,y)]ExX,yπ[βlogπref(yx)π(yx)]=πmaxExX,yπ[r(x,y)βlogπref(yx)π(yx)]=πmaxExX,yπ[logπref(yx)π(yx)β1r(x,y))]=πminExX,yπ[logπref(yx)π(yx)log  exp(β1r(x,y))]=πminExX,yπ[logπref(yx)exp(β1r(x,y))π(yx)]=πminExX,yπ[logZ(x)1πref(yx)exp(β1r(x,y))π(yx)log  Z(x)]
    Z ( x ) Z(x) Z(x) 表示如下:
    Z ( x ) = ∑ y π r e f ( y ∣ x ) e x p ( 1 β r ( x , y ) ) Z(x) = \underset{y}{\sum} \pi_{ref}(y|x) exp(\frac{1}{\beta}r(x,y) ) Z(x)=yπref(yx)exp(β1r(x,y))
    令:
    1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) = π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) ∑ y π r e f ( y ∣ x ) e x p ( 1 β r ( x , y ) ) = π ∗ ( y ∣ x ) \frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y)) = \frac{\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))}{\underset{y}{\sum} \pi_{ref}(y|x) exp(\frac{1}{\beta}r(x,y) )} \\ = \pi^*(y|x) Z(x)1πref(yx)exp(β1r(x,y))=yπref(yx)exp(β1r(x,y))πref(yx)exp(β1r(x,y))=π(yx)
    接下来继续对``dpo` 目标函数进行化简:
    m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) 1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) − l o g Z ( x ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π ∗ ( y ∣ x ) − l o g Z ( x ) ] \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))} - log \ \ Z(x) ] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi^*(y|x)} - log \ \ Z(x) ] \\ πminExX,yπ[logZ(x)1πref(yx)exp(β1r(x,y))π(yx)log  Z(x)]=πminExX,yπ[logπ(yx)π(yx)log  Z(x)]
    由于 Z ( x ) Z(x) Z(x) 表达式与 π \pi π 不相关,优化可以直接省去。
    m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π ∗ ( y ∣ x ) − l o g Z ( x ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π ∗ ( y ∣ x ) ] = m i n π E x ∼ D [ D K L ( π ( y ∣ x ) ∣ ∣ π ∗ ( y ∣ x ) ) ] \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi^*(y|x)} - log \ \ Z(x) ] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi^*(y|x)} ] \\ = \underset{\pi}{min} E_{x \sim D}[\mathbb{D}_{KL}(\pi(y|x) || \pi^*(y|x))] \\ πminExX,yπ[logπ(yx)π(yx)log  Z(x)]=πminExX,yπ[logπ(yx)π(yx)]=πminExD[DKL(π(yx)∣∣π(yx))]
    当 目标函数最小化,也就是 D K L \mathbb{D}_{KL} DKL 最小化,所满足的条件为:
    π ( y ∣ x ) = π ∗ ( y ∣ x ) = 1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) \pi(y|x) = \pi^*(y|x) = \frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y)) π(yx)=π(yx)=Z(x)1πref(yx)exp(β1r(x,y))
    反解奖励函数 r ( x , y ) r(x,y) r(x,y)
    r ( x , y ) = β π ( y ∣ x ) π r e f ( y ∣ x ) + β ⋅ l n Z ( x ) r(x,y) = \beta \frac{\pi(y|x)}{\pi_{ref}(y|x)} + \beta · ln \Z(x) r(x,y)=βπref(yx)π(yx)+βlnZ(x)

求解奖励函数隐式表达后,带入Bradley-Terry 交叉熵函数:
L o s s = − E ( x , y w , y l ) ∼ D [ l n σ ( r ∗ ( x , y w ) − r ∗ ( x , y l ) ) ] = − E ( x , y w , y l ) ∼ D [ l n σ ( β l o g π ( y w ∣ x ) π r e f ( y w ∣ x ) − β l o g π ( y l ∣ x ) π r e f ( y l ∣ x ) ) ] Loss = - E_{(x,y_w,y_l)\sim D}[ln \sigma(r^*(x,y_w) -r^*(x,y_l))] \\ =- E_{(x,y_w,y_l)\sim D}[ln \sigma(\beta log\frac{\pi(y_w|x)}{\pi_{ref}(y_w|x)} - \beta log \frac{\pi(y_l|x)}{\pi_{ref}(y_l|x)})] Loss=E(x,yw,yl)D[l(r(x,yw)r(x,yl))]=E(x,yw,yl)D[l(βlogπref(ywx)π(ywx)βlogπref(ylx)π(ylx))]
到此,整个数学部分已推导完毕,不得不说句牛逼plus。

  • 梯度表征:

    将上述损失进行梯度求导
    ∇ θ L o s s ( π θ ; π r e f ) = − E ( x , y w , y l ) ∼ D [ β σ ( β l o g π ( y w ∣ x ) π r e f ( y w ∣ x ) − β l o g π ( y l ∣ x ) π r e f ( y l ∣ x ) ) [ ∇ θ l o g π ( y w ∣ x ) − ∇ θ l o g π ( y l ∣ x ) ] ] \nabla_\theta Loss(\pi_{\theta};\pi_{ref}) = - E_{(x,y_w,y_l)\sim D}[\beta \sigma(\beta log\frac{\pi(y_w|x)}{\pi_{ref}(y_w|x)} - \beta log \frac{\pi(y_l|x)}{\pi_{ref}(y_l|x)}) [\nabla_{\theta}log \pi(y_w|x) - \nabla_{\theta}log \pi(y_l|x) ]] θLoss(πθ;πref)=E(x,yw,yl)D[βσ(βlogπref(ywx)π(ywx)βlogπref(ylx)π(ylx))[θlogπ(ywx)θlogπ(ylx)]]
    再令:
    r ^ ( x , y ) = β π θ ( y ∣ x ) π r e f ( y ∣ x ) \hat{r}(x,y) = \beta \frac{\pi_{\theta}(y|x)}{\pi_{ref}(y|x)} r^(x,y)=βπref(yx)πθ(yx)
    最终形式:
    ∇ θ L o s s ( π θ ; π r e f ) = − β E ( x , y w , y l ) ∼ D [ σ ( r ^ ∗ ( x , y w ) − r ^ ∗ ( x , y l ) ) ⏟ h i g h e r w e i g h t w h e n r e w a r d e s t i m a t e i s w r o n g [ ∇ θ l o g π ( y w ∣ x ) ⏟ i n c r e a s e l i k e l i h o o d o f y w − ∇ θ l o g π ( y l ∣ x ) ⏟ d e c r e a s e l i k e l i h o o d o f y l ] ] \nabla_\theta Loss(\pi_{\theta};\pi_{ref}) = -\beta E_{(x,y_w,y_l)\sim D}[\underbrace{\sigma(\hat{r}^*(x,y_w) -\hat{r}^*(x,y_l))}_{higher\ weight\ when\ reward\ estimate\ is\ wrong} [\underbrace{\nabla_{\theta}log \pi(y_w|x)}_{\ \ \ \ \ \ \ \ \ increase \ likelihood\ of\ y_w} - \underbrace{\nabla_{\theta}log \pi(y_l|x)}_{decrease \ likelihood \ of \ y_l} ]] θLoss(πθ;πref)=βE(x,yw,yl)D[higher weight when reward estimate is wrong σ(r^(x,yw)r^(x,yl))[         increase likelihood of yw θlogπ(ywx)decrease likelihood of yl θlogπ(ylx)]]

  • 改进方法ODPO

    dpo缺陷主要是:采用Bradley–Terry model只给出了一个response比另一个response好的概率,而没有告诉我们好的程度。

odpo 核心思想: 把这个好的程度的差距信息引入到偏好的建模里,应该能带来收益,及在dpo损失里添加margin , 这相当于要求偏好回应的评估分数要比非偏好回应的评估分数大,且要大offset值这么多。目的是:加大对靠得比较近的数据对的惩罚力度。
L o s s o d p o = − E ( x , y w , y l ) ∼ D [ l n σ ( r ∗ ( x , y w ) − r ∗ ( x , y l ) ) − δ r ] δ r = α l o g ( r ( y w ) − r ( y l ) ) Loss^{odpo}= - E_{(x,y_w,y_l)\sim D}[ln \sigma(r^*(x,y_w) -r^*(x,y_l)) - \delta_r] \\ \delta_r = \alpha \ log(r(y_w)- r(y_l)) Lossodpo=E(x,yw,yl)D[l(r(x,yw)r(x,yl))δr]δr=α log(r(yw)r(yl))

  • 相似改进方法:

    IPO KTO 都是不需要奖励模型的;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/40038.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2. Python+Playwright playwright的API

Playwright支持同步和异步两种API,使用异步API需要导入asyncio库,它是一个可以用来实现Python协程的库,更详细介绍可参考Python协程 。我们可以根据自己的偏好选择适合的模式。 同步与异步模式原理 同步操作方式:在代码执行时&am…

c++的const

const在C中是一个非常重要的关键字,用于定义不可变的变量、函数参数、成员函数等。它可以提高代码的可读性、安全性,并帮助编译器进行优化。 定义常量 使用const定义不可变的变量: const int MAX_SIZE 100;常量指针 指向常量的指针和常量…

【ARMv8/v9 GIC 系列 5 -- GIC GICD_CTRL 使用详细介绍】

文章目录 GICD_CTRLGICD_CTLR 寄存器结构RWP(Register Write Pending)E1NWF(Enable 1 of N Wakeup Functionality)DS(Disable Security) 亲和性路由(Affinity Routing)ARE_NSARE_S 中…

【java计算机毕设】服装生产管理系统java MySQL springboot vue html maven项目设计源代码+万字文档

目录 1项目功能 2项目介绍 3项目地址 1项目功能 【java计算机毕设】服装生产管理系统java MySQL springboot vue html maven项目代码文档 2项目介绍 系统功能: 服装生产管理系统包括管理员、用户两种角色。 管理员功能包括个人中心模块用于修改个人信息和密码&a…

【UE5.3】笔记6-创建可自由控制Pawn类

搭建场景 搭建一个场景:包含地板、围墙。可以根据喜好加一些自发光的效果。 增加食物 创建食物蓝图类,在场景里放置一些食物以供我们player去吃掉获取分值。 创建可控制的layer 我们先右键创建一个蓝图继承自pawn类,起名BP_Player&#xf…

Python-算法编程100例-二分法(入门级)-业务负载分配

题目: 现有一个服务器集群(服务器数量为 serverNum),和一批不同类型的任务(用数组 tasks 表示,下标表示任务类型,值为任务数量)。 现需要把这批任务都分配到集群的服务器上&#x…

2024年在WordPress中创建销售活动的专家级优惠券方法

2024年在WordPress中创建销售活动的专家级优惠券方法 今天我想和大家分享一些关于如何在WordPress网站上使用专家级优惠券工具来创建销售活动的经验。对于已经在电商领域有一定经验的店主,利用专家级优惠券不仅能吸引顾客,还能显著增加销量。在这篇文章…

【Linux】线程封装与互斥(万字)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 文章目录 前言 C多线程的用法 对原生线程进行一次封装 理解pthread线程 Linux线程互斥 进程线程间的互斥相关背景概念 互斥量mutex 操作共享变量会有问题的售票…

[go-zero] goctl 生成api和rpc

文章目录 1.goctl 概述2.go-zero 需要安装的组件3.生成 api4.生成 rpc 1.goctl 概述 goctl支持多种rpc,较为流行的是google开源的grpc,这里主要介绍goctl rpc protoc的代码生成与使用。protoc是grpc的命令,作用是将proto buffer文件转化为相…

探讨命令模式及其应用

目录 命令模式命令模式结构命令模式适用场景命令模式优缺点练手题目题目描述输入描述输出描述题解 命令模式 命令模式是一种行为设计模式, 它可将请求转换为一个包含与请求相关的所有信息的独立对象。 该转换让你能根据不同的请求将方法参数化、 延迟请求执行或将其…

《亚马逊搬运亚马逊产品》配合跟卖采集爬取跟卖店铺高质量

亚马逊高质量产品如何搬运?亚马逊采集亚马逊。 哈喽大家好,大家讲一下做亚马逊是发货、铺货这块的功能。目前这款软件做跟卖大家都知道,同时也支持做铺货。铺货可以采集国内的1688、淘宝、京东都可以采,采完之后也可以采速卖通&a…

周周星分享7.3—基于气象大数据的自动站实况联合预测

赛题 2024中国高校计算机大赛 — 大数据挑战赛 经验分享 大家好,我是扫地僧团队的队长,以前参加这样打榜的比赛比较少,了解的打榜技巧不是太多,所以想从科研的角度给大家一点分享。 这次比赛主要从以下五个步骤进行&#xff1a…

Linux Doxygen快速生成文档

此前写过一篇编写Doxygen格式的注释以用于生成文档,点击以查阅, Doxygen常用语法与字段记录,但是当时用的windows桌面版的doxygen,最近使用ubuntu编写代码想直接使用doxygen生成,故写下此博客 Doxygen Doxygen是一个用于生成软件文档的工具,它可以从代码中提取注释…

(四)opengl函数加载和错误处理

#include <glad/glad.h>//glad必须在glfw头文件之前包含 #include <GLFW/glfw3.h> #include <iostream>void frameBufferSizeCallbakc(GLFWwindow* window, int width, int height) {glViewport(0, 0, width, height);std::cout << width << &qu…

PHP多线程爬虫:高效解析电商网页内容

如何使用php多线程编写高效的网页爬虫 随着互联网的发展和数据的不断增长&#xff0c;网页爬虫成为了一种非常重要的工具。通过网页爬虫&#xff0c;我们可以自动地从各种网站上获取大量的数据&#xff0c;并进行进一步的处理和分析。而PHP作为一种广泛使用的编程语言&#xf…

Android高级面试_6_性能优化

Android 高级面试-7&#xff1a;网络相关的三方库和网络协议等 1、网络框架 问题&#xff1a;HttpUrlConnection, HttpClient, Volley 和 OkHttp 的区别&#xff1f; HttpUrlConnection 的基本使用方式如下&#xff1a; URL url new URL("http://www.baidu.com")…

SwanLinkOS首批实现与HarmonyOS NEXT互联互通,软通动力子公司鸿湖万联助力鸿蒙生态统一互联

在刚刚落下帷幕的华为开发者大会2024上&#xff0c;伴随全场景智能操作系统HarmonyOS Next的盛大发布&#xff0c;作为基于OpenHarmony的同根同源系统生态&#xff0c;软通动力子公司鸿湖万联全域智能操作系统SwanLinkOS首批实现与HarmonyOS NEXT互联互通&#xff0c;率先攻克基…

大模型与机器人精彩碰撞-7月5日晚上八点不见不散!

在瞬息万变的科技时代&#xff0c;新兴人工智能和机器人技术的结合正在引领新一轮的创新浪潮。你是否想成为未来科技的领航者&#xff1f;你是否想了解最前沿的AI与机器人技术&#xff1f;行麦科技重磅推出的“AIGC时代的生存法则”AI系列课&#xff0c;将为你揭开大模型与机器…

创建kset

1、kset介绍 2、相关结构体和api介绍 2.1 struct kset 2.2 kset_create_and_add kset_create_and_addkset_createkset_registerkobject_add_internalkobject_add_internal2.3 kset_unregister kset_unregisterkobject_delkobject_put3、实验操作 #include<linux/module.…

【leetcode64-69二分查找、70-74栈、75-77堆】

二分查找[64-69] 时间复杂度O(log n)&#xff0c;要想到二分排序 35.搜索插入位置 class Solution:def searchInsert(self, nums: List[int], target: int) -> int:left 0right len(nums)-1while left < right: #左闭右闭mid (leftright)//2if nums[mid] < target…