Redis高级篇详细讲解

0.今日菜单

  1. Redis持久化【理解】

  2. Redis主从

  3. Redis哨兵

  4. Redis分片集群【运维】

单点Redis的问题

  1. 数据丢失问题:Redis是内存存储,服务重启可能会丢失数据

 

并发能力问题:单节点Redis并发能力虽然不错,但也无法满足如618这样的高并发场景  

 

故障恢复问题:如果Redis宕机,则服务不可用,需要一种自动的故障恢复手段  

 

存储能力问题:Redis基于内存,单节点能存储的数据量难以满足海量数据需求  

 

如何解决呢?  

1.Redis持久化【理解】

Redis有两种持久化方案:

  • RDB持久化

  • AOF持久化

1.1.RDB持久化

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据到内存中。快照文件称为RDB文件,默认是保存在当前运行目录。

1.1.1.执行时机

RDB持久化在四种情况下会执行:

  • 执行save命令

  • 执行bgsave命令

  • Redis停机时

  • 触发RDB条件时

1)save命令

执行下面的命令,可以立即执行一次RDB:

 

save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。

2)bgsave命令

下面的命令可以异步执行RDB:

bg: background后台执行

这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。

3)停机时

Redis停机时会执行一次save命令,实现RDB持久化。

通过ctrl+c 正常中止Redis,不能直接杀进程

4)触发RDB条件【常用】

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

# 900秒内,如果至少有1个key被修改,则执行bgsave (后台执行save,用子进程)
#save 900 1  
#save 300 10  
#save 60 10000 
save 10 1# 如果是save "" 则表示禁用RDB
#save ""

RDB的其它配置也可以在redis.conf文件中设置:

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression no# RDB文件名称
dbfilename dump.rdb  # 文件保存的路径目录
dir ./ 
#dir /opt/data/sky/

#修改完配置文件后,需要重启redis,并且指定配置文件:
redis-server.exe redis.windows.conf

1.1.2.RDB原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据写入 RDB 文件

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;

  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

1.1.3.小结

RDB会在什么时候执行?save 60 1000代表什么含义?

  • 默认是服务停止时

  • 代表60秒内至少执行1000次修改则触发RDB

RDB的缺点?

  • RDB执行有间隔时间,两次RDB之间写入数据有丢失的风险

  • fork子进程、压缩、写出RDB文件都比较耗时

RDB方式bgsave的基本流程?

  • fork主进程得到一个子进程,共享内存空间

  • 子进程读取内存数据并写入新的RDB文件

  • 用新RDB文件替换旧的RDB文件

1.2.AOF持久化

1.2.1.AOF原理

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令(增删改)都会记录在AOF文件,可以看做是命令日志文件。

 

思考:

当修改Redis中的数据时,是先执行命令写入数据,还是先记录日志呢?

Redis采用了“写后”日志,意思即是Redis先执行了命令,把数据写入了内存了,再把命令记录到日志

为什么AOF是“写后”日志而不是“写前”?

  • 可以避免额外的检查开销,Redis 在向 AOF 记录日志的时候,并不会先去对这些命令进行语法检查。因此如果先记日志再执行命令的话,日志中就有可能记录了错误的命令,Redis 在使用日志恢复数据时,就可能会出错。所以采取写后日志这种方式,就是先让系统执行命令,只有命令能执行成功,才会被记录到日志中。

  • 而且在命令执行后才记录日志,不会阻塞当前的写操作。

1.2.2.AOF配置

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always # 默认方案每秒一次: 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件: every second
appendfsync everysec # 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

三种策略对比:

刷盘:将内存中的数据刷新到硬盘中(持久化)

1.2.3.AOF文件重写

 因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

#bgrewriteaof: background rewrite aof(后台重写aof日志文件)
#在客户端redis-cli手动执行
bgrewriteaof

如图,AOF原本有三个命令,但是set num 123 和 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。

所以重写命令后,AOF文件内容就是:

mset name jack num 666

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb

1.3.RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

redis 4.0之后提供混合持久化的方式将rdb和aof做了合并,每隔一段时间使用rdb来存储数据,在这一段时间之内修改操作使用aof来记录。

2.Redis主从集群【了解】

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

2.1.搭建主从架构【运维】

验证主从数据同步:

  • 利用redis-cli连接6381,执行set num 123

  • 利用redis-cli连接6382,执行get num,再执行set num 666

  • 利用redis-cli连接6383,执行get num,再执行set num 888

可以发现,只有在6381这个master节点上可以执行写操作,6382和6383这两个slave节点只能执行读操作。

#在任一redis-cli的客户端中都可以查看状态:
info replication

2.2.数据同步原理

2.2.1.全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点

但这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid

  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset(对应图中1.1),master才能判断需要同步哪些数据。

因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。

master判断发现slave发送来的replid与自己的不一致(对应图中1.2),说明这是一个全新的slave,就知道要做全量同步了。master会将自己的replid和offset发送给这个slave(对应图中1.3),slave保存这些信息(对应图中1.4)。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

 

完整流程描述:

  • slave节点请求增量同步

  • master节点判断replid,发现不一致,拒绝增量同步

  • master将完整内存数据生成RDB,发送RDB到slave

  • slave清空本地数据,加载master的RDB

  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave

  • slave执行接收到的命令,保持与master之间的同步

2.2.2.增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

那么master怎么知道slave与自己的数据差异在哪里呢?

2.2.3.repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset

直到数组被填满:

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

2.3.主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。

  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO

  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步

  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:

2.4.小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。

  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时

  • slave节点断开时间太久,offset差距过大,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

3.Redis哨兵集群【了解】

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。

3.1.哨兵原理

3.1.1.集群结构和作用

哨兵的结构如图:

哨兵的作用如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作

  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主

  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端

1.哨兵是一个集群,一般是奇数个节点防止脑裂

2.哨兵会与master slave保持心跳,判断服务是否可用

3.如果master宕机进行投票判断是否客观下线,如果客观下线选出新的主节点

4.发送命令slave of no one 新主节点

5.发送命令slave of 新的master ip 端口号 给所有其他节点

3.1.2.集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线(个人判断)

•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线(真正下线)。quorum值最好超过Sentinel实例数量的一半。

3.1.3.集群故障恢复原理

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点

  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举

  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高

  • 最后是判断slave节点的运行id大小,越小优先级越高。

当选出一个新的master后,该如何实现切换呢?

流程如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master

  • sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。

  • 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点

3.1.4.小结

Sentinel的三个作用是什么?

  • 监控

  • 自动故障转移(选一个新的slave做为master)

  • 通知(通知其他的slave,master换人了)

Sentinel如何判断一个redis实例是否健康?

  • 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线

  • 如果大多数sentinel都认为实例主观下线,则判定服务下线

故障转移步骤有哪些?

  • 首先选定一个slave作为新的master,执行slaveof no one

  • 然后让所有节点都执行slaveof 新master

  • 修改故障节点配置,添加slaveof 新master

3.2.搭建哨兵集群【运维】

具体搭建流程参考课前资料《Redis集群.md》:

3.3.RedisTemplate

在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。

下面,我们通过一个测试来实现RedisTemplate集成哨兵机制。

3.3.1.导入Demo工程

首先,我们引入课前资料提供的Demo工程:

3.3.2.检查依赖

在项目的pom文件中引入依赖:

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3.3.3.配置Redis地址

然后在配置文件application.yml中指定redis的sentinel相关信息:

spring:redis:sentinel: #哨兵master: mymaster #指定master名称nodes: #指定哨兵的集群信息- 127.0.0.1:26401- 127.0.0.1:26402- 127.0.0.1:26403

为什么不配置master和slave的地址?

因为在集群运行过程中,master可能宕机,导致重新选举,产生新的master。

3.3.4.配置读写分离

在项目的启动类中,添加一个新的bean:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){//readFrom:指定从什么地方读取数据//replica: 副本=== slave(从)//PREFERRED: 优先return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取

  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica

  • REPLICA:从slave(replica)节点读取

  • REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master

4.Redis分片集群【运维】【主流】

在生产环境(用户真实使用的服务器集群)

分片集群结构

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题(单个redis内存数据量过大的问题)

  • 高并发写的问题(单个redis主节点写入操作并发过多的问题)

使用分片集群可以解决上述问题,如图:

分片集群特征:

  • 集群中有多个master,每个master保存不同数据

  • 每个master都可以有多个slave节点

  • master之间通过ping监测彼此健康状态

  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

4.1.搭建分片集群【运维】

具体搭建流程参考课前资料《Redis集群.md》:

4.2.散列插槽

4.2.1.插槽原理

分片集群中(master数量)整体编号,分为16384个插槽;如果集群中有3个master,则每个master分到的插槽个数为:16384 / 3 ≈ 5461,可以通过查询看到:

#打开集群客户端
redis-cli -c -p 端口号#查看集群节点信息
cluster nodes
set name zhangsan

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

  • 计算方式:HASH_SLOT=CRC16(key) % 16384, 结果在0 -16383之间

  • key中如果包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分

set goods-10001 xx
set goods-222000 xxset {goods}-1001 xxxx
set {goods}-56889234 xxxx
#计算存储时,
CRC16(goods) % 16384

 

  • key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值(纯数字),然后对16384取余,得到的结果肯定位于0-16383之间就是插槽值。

如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到7003节点。

到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点

4.2.1.小结

Redis如何判断某个key应该在哪个Master实例?

  • 计算方式:HASH_SLOT=CRC16(key) % 16384, 结果在0 -16383之间

  • 将16384个插槽分配到不同的实例

  • 根据key的有效部分计算哈希值,对16384取余

  • 余数作为插槽,寻找插槽所在实例即可

如何将同一类数据固定的保存在同一个Redis实例?

  • 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

    set {goods}1001 info
    set {goods}10002 info2
    ​
    hash(goods) % 16384 = 固定值,
    #这样所有商品的数据就能保存到同一个master中

4.3.集群伸缩【运维】【了解】

不用练习,一般会由资深运维工程师来做

集群伸缩也可以称为:集群扩展

作用:如果添加或者减少 Master节点,手动进行分槽,将原来的一些槽移到新的节点上去

redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:

比如,添加节点的命令:

4.3.1.需求分析

需求:向集群中添加一个新的master节点,并向其中存储 num = 10

  • 启动一个新的redis实例,端口为7004

  • 添加7004到之前的集群,并作为一个master节点

  • 给7004节点分配插槽,使得num这个key可以存储到7004实例

这里需要两个新的功能:

  • 添加一个节点到集群中

  • 将部分插槽分配到新插槽

4.3.2.创建新的redis实例

创建一个文件夹:

mkdir 7004

拷贝配置文件:

cp redis.conf /7004

修改配置文件:

sed /s/6379/7004/g 7004/redis.conf

启动

redis-server 7004/redis.conf

4.3.3.添加新节点到redis

添加节点的语法如下:

执行命令:

redis-cli --cluster add-node  192.168.150.101:7004 192.168.150.101:7001

通过命令查看集群状态:

redis-cli -p 7001 cluster nodes

如图,7004加入了集群,并且默认是一个master节点:

但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上

4.3.4.转移插槽

我们要将num存储到7004节点,因此需要先看看num的插槽是多少:

如上图所示,num的插槽为2765.

我们可以将0~3000的插槽从7001转移到7004,命令格式如下:

具体命令如下:

建立连接:

得到下面的反馈:

询问要移动多少个插槽,我们计划是3000个:

新的问题来了:

那个node来接收这些插槽??

显然是7004,那么7004节点的id是多少呢?

复制这个id,然后拷贝到刚才的控制台后:

这里询问,你的插槽是从哪里移动过来的?

  • all:代表全部,也就是三个节点各转移一部分

  • 具体的id:目标节点的id

  • done:没有了

这里我们要从7001获取,因此填写7001的id:

填完后,点击done,这样插槽转移就准备好了:

确认要转移吗?输入yes:

然后,通过命令查看结果:

可以看到:

目的达成。

4.4.故障转移

当master宕机之后,集群会重新将slave提升成master集群可以继续工作

集群初识状态是这样的:

其中7001、7002、7003都是master,我们计划让7002宕机。

4.4.1.自动故障转移

当集群中有一个master宕机会发生什么呢?

直接停止一个redis的master实例,例如7002:

redis-cli -p 7002 shutdown

1)首先是该实例与其它实例失去连接

2)然后是疑似宕机:

#通过redis-cli.exe,查看集群信息
redis-cli -c -p 6501
cluster nodes

3)最后是确定下线,自动提升一个slave为新的master: 4)当7002再次启动,就会变为一个slave节点了:

4.4.2.手动故障转移

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:

这种failover命令可以指定三种模式:

  • 缺省:默认的流程,如图1~6歩

  • force:省略了对offset的一致性校验

  • takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见

案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位

步骤如下:

1)利用redis-cli连接7002这个节点

2)执行cluster failover命令

如图:效果:

4.5.RedisTemplate访问分片集群

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:

1)引入redis的starter依赖

2)配置分片集群地址

3)配置读写分离

与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

注意:把哨兵相关配置注释掉

 

spring:redis:
#    sentinel:
#      master: mymaster #指定master名称
#      nodes: #指定哨兵的集群信息
#        - 127.0.0.1:26401
#        - 127.0.0.1:26402
#        - 127.0.0.1:26403cluster: #分片集群nodes:- 127.0.0.1:6501- 127.0.0.1:6502- 127.0.0.1:6503- 127.0.0.1:6504- 127.0.0.1:6505- 127.0.0.1:6506

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/4000.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++链表操作入门

数据结构基础&#xff1a;链表操作入门 数据结构基础&#xff1a;链表操作入门链表的基本概念链表的基本操作输出链表插入节点删除节点查找值 完整的链表操作示例结语 数据结构基础&#xff1a;链表操作入门 在计算机科学中&#xff0c;数据结构是组织和存储数据的方式&#x…

【Linux学习】​​学习Linux的准备工作和Linux的基本指令

˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好&#xff0c;我是xiaoxie.希望你看完之后,有不足之处请多多谅解&#xff0c;让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…

C语言:插入排序

插入排序 1.解释2.步骤3.举例分析示例结果分析 1.解释 插入排序是一种简单直观的排序算法&#xff0c;它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。插入排序在实现上&#xff0c;通常采…

直播带货秘籍:人气飙升的成交话术大揭秘

在营销的广阔天地中&#xff0c;种草话术如同一把锐利的剑&#xff0c;能精准切入消费者的心智。选择恰当的切入点是关键&#xff0c;它可能是一个普遍的生活场景&#xff0c;一个共同的消费痛点&#xff0c;或是一处人们向往的心理寄托。通过细致的观察和分析&#xff0c;我们…

Markdown 列表语法

有序列表 要创建有序列表&#xff0c;请在每个列表项前添加数字并紧跟一个英文句点。数字不必按数学顺序排列&#xff0c;但是列表应当以数字 1 起始。 Markdown语法HTML预览效果1. First item 2. Second item 3. Third item 4. Fourth item<ol> <li>First item&…

Apollo 7周年大会:百度智能驾驶的展望与未来

本心、输入输出、结果 文章目录 Apollo 7周年大会&#xff1a;百度智能驾驶的展望与未来前言百度集团副总裁、智能驾驶事业群组总裁王云鹏发言 直播回放大会相关内容先了解 Apollo&#xfeff;开放平台 9.0架构图 发布产品Apollo 定义自己对于智能化的认知百度集团副总裁 王云鹏…

沉浸式推理乐趣:体验线上剧本杀小程序的魅力

在这个信息爆炸的时代&#xff0c;人们的娱乐方式也在不断地推陈出新。其中&#xff0c;线上剧本杀小程序以其独特的沉浸式推理乐趣&#xff0c;成为了许多人的新宠。它不仅让我们在闲暇之余享受到了推理的快乐&#xff0c;更让我们在虚拟的世界里感受到了人性的复杂与多彩。 线…

AI新闻速递:揭秘本周科技界最热的AI创新与发展

兄弟朋友们&#xff0c;本周的AI领域又迎来了一系列激动人心的进展。在这个快速变化的时代&#xff0c;不会利用AI的人&#xff0c;就像在数字化高速公路上步行的旅行者&#xff0c;眼看着同行者驾驶着智能汽车绝尘而去&#xff0c;而自己却束手无策。 1. Adobe Firefly 3&…

go 测试和文件

go 测试和文件 需求传统测试单元测试牛刀小试总结练习文件介绍打开关闭文件读文件一次性读取文件写文件文件或文件夹是否存在文件拷贝 需求 有一个函数&#xff0c;怎样确认他运行结果是正确的&#xff1f; func addUpper(n int)int {res : 0for i : 1; i < n; i {res1}r…

Matlab绘制对数轴

Matlab绘制对数轴 在Matlab中&#xff0c;可以使用semilogx和semilogy函数分别绘制对数坐标轴和线性坐标轴的图形&#xff0c;可以使用loglog绘制双对数轴图形。 使用semilogx函数绘制对数x轴的图形示例&#xff1a; x linspace(0.1, 10, 100); % 生成从0.1到10的100个等间隔…

【基础算法总结】双指针算法二

双指针 1.有效三角形的个数2.和为S的两个数字3.和为S的两个数字4.四数之和 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你的支持是对我最大的鼓励&#xff0c;我们一起努力吧!&#x1f603;&#x1f603; 1.有效三角形的个数…

elasticsearch-8.1.0安装记录

目录 零、版本说明一、安装二、使用客户端访问 零、版本说明 centos [rootnode1 ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core)elasticsearch elasticsearch-8.1.0-linux-x86_64一、安装 systemctl stop firewalld.servicesystemctl disable firewal…

mysql中join内外连接查询例子

文章目录 join关键字概要举例using 与 on 区别 join关键字 在MySQL中&#xff0c;JOIN 是一种用于将两个或多个表中的行联合起来的操作。 连接&#xff08;join&#xff09;就是将一张表中的行按照某个条件&#xff08;连接条件&#xff09;与另一张表中的行连接起来形成一个新…

debian配置BIND DNS服务器

前言 局域网内有很多台主机&#xff0c;IP难以记忆。 而修改hosts文件又难以做到配置共享和统一&#xff0c;需要一台内网的DNS服务器。 效果展示 这里添加了一个域名hello.dog&#xff0c;将其指向为192.168.1.100。 同时&#xff0c;外网的域名不会受到影响&#xff0c;…

C语言:内存操作函数memcpy、memmove、memset和memcpy的使用和模拟实现

一&#xff1a;memcpy的使用和模拟 memcpy使用时需要包含的头文件为#include<string.h> void* memcpy(void* destination,const void* source,size_t num) 函数memcpy从source的位置开始向后复制num个字节的数据到destination指向的内存位置&#xff08;特别注意的是…

百度百科推广轻松实现销量翻倍的4个秘诀-华媒舍

在如今的数字化时代&#xff0c;网络推广已经成为企业推广产品和增加销量的重要手段之一。其中&#xff0c;百度百科作为国内最大的中文百科网站&#xff0c;拥有庞大的用户群体&#xff0c;成为众多企业进行产品推广和提升知名度的选择之一。本文将介绍如何高效运用百度百科进…

电子盖章管理软件

电子盖章管理软件是一种专门设计用于生成、管理和验证电子印章&#xff0c;以及支持电子文档安全签署过程的应用程序。这些软件通常具备以下核心功能&#xff1a; 电子印章生成&#xff1a;允许用户创建、设计或导入符合法律要求的电子印章图像&#xff0c;关联数字证书以确保印…

FORM调用标准AP\AR\GL\FA界面

EBS FORM客户化界面有时候数据需要追溯打开AP\AR\GL\FA等界面&#xff1a; 一种打开日记账的方式&#xff1a; PROCEDURE SHOW_JOURNAL ISparent_form_id FormModule;child_form_id FormModule; BEGINclose_jrn;parent_form_id : FIND_FORM(:SYSTEM.CURRENT_FORM);COPY(TO…

4/26发布发布:缺了好几次的作业,矩形法+二分法求下面方程根+顺序查找n+程序填空,补一下还有八九没做,炸8412 字不是干的,哈哈哈

OK了发布 你说的对&#xff0c;但是釜山行里逃过了六节车厢的丧尸&#xff0c;却逃不过一节车厢的人心&#xff0c;这说明了什么&#xff1f;说明一节更比六节强&#xff0c;王中王&#xff0c;火腿肠&#xff0c;果冻我要喜之郎&#xff0c;上课要听鹏哥讲&#xff01; 目录…