常见函数的导数
常量函数的导数
d d x ( c ) = 0 \frac{d}{dx}(c) = 0 dxd(c)=0
常量函数的图像是一条水平线 y = c y = c y=c,它的斜率为0,所以我们必须有 f ′ ( x ) = 0 f'(x) = 0 f′(x)=0。从导数的定义来看,证明也很简单:
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 c − c h = lim h → 0 0 h = 0 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = 0 f′(x)=h→0limhf(x+h)−f(x)=h→0limhc−c=h→0limh0=0
幂函数的导数
接下来看幂函数 f ( x ) = x n f(x) = x^n f(x)=xn,其中 n n n为正整数。当 n = 1 n = 1 n=1时,函数的图像是一条直线,斜率为 1 1 1。
d d x ( x ) = 1 \frac{d}{dx}(x) = 1 dxd(x)=1
当 n = 2 n = 2 n=2或 n = 3 n = 3 n=3时,根据上一节的计算,我们得知它们的导数为
d d x ( x 2 ) = 2 x \frac{d}{dx}(x^2) = 2x dxd(x2)=2x
d d x ( x 3 ) = 3 x 2 \frac{d}{dx}(x^3) = 3x^2 dxd(x3)=3x2
从上面的幂函数导数,我们有理由猜测 ( d / d x ) ( x n ) = n x n − 1 (d/dx)(x^n) = nx^{n-1} (d/dx)(xn)=nxn−1。
幂函数的导数
d d x ( x n ) = n x n − 1 \frac{d}{dx}(x^n) = nx^{n-1} dxd(xn)=nxn−1
第一种证明
已知公式
x n − a n = ( x − a ) ( x n − 1 + x n − 2 a + ⋯ + x a n − 2 + a n − 1 ) x^n - a^n = (x - a)(x^{n-1} + x^{n-2}a + \dots +xa^{n-2} + a^{n-1}) xn−an=(x−a)(xn−1+xn−2a+⋯+xan−2+an−1)
因此:
f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a = lim x → a x n − a n x − a = lim x → a ( x n − 1 + x n − 2 a + ⋯ + x a n − 2 + a n − 1 ) = a n − 1 + a n − 2 a + ⋯ + a a n − 2 + a n − 1 = n a n − 1 \begin{align*} f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} &= \lim_{x \to a} \frac{x^n - a^n}{x - a} \\ &= \lim_{x \to a} (x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1}) \\ &= a^{n-1} + a^{n-2} a+ \dots + aa^{n-2} + a^{n-1} \\ &= n a^{n-1} \end{align*} f′(a)=x→alimx−af(x)−f(a)=x→alimx−axn−an=x→alim(xn−1+xn−2a+⋯+xan−2+an−1)=an−1+an−2a+⋯+aan−2+an−1=nan−1
第二种证明
使用二项式定理进行展开:
f ′ ( x ) = lim h → 0 ( x + h ) n − x n h = lim h → 0 [ x n + n x n − 1 h + n ( n − 1 ) 2 x n − 2 h 2 + ⋯ + n h x n − 1 + h n ] − x n h = lim h → 0 [ n x n − 1 h + n ( n − 1 ) 2 x n − 2 h 2 + ⋯ + n h x n − 1 + h n h ] = lim h → 0 [ n x n − 1 + n ( n − 1 ) 2 x n − 2 h + ⋯ + n h x n − 1 + h n − 1 ] = n x n − 1 \begin{align*}f'(x) = \lim_{h \to 0} \frac{(x + h)^n - x^n}{h} &= \lim_{h \to 0} \frac{\left[ x^n + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \cdots + nhx^{n-1} + h^n \right] - x^n}{h} \\ &= \lim_{h \to 0} \left[ \frac{nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \cdots + nhx^{n-1} + h^n}{h} \right] \\ &= \lim_{h \to 0} \left[ nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \cdots + nhx^{n-1} + h^{n-1} \right] \\ &= nx^{n-1}\end{align*} f′(x)=h→0limh(x+h)n−xn=h→0limh[xn+nxn−1h+2n(n−1)xn−2h2+⋯+nhxn−1+hn]−xn=h→0lim[hnxn−1h+2n(n−1)xn−2h2+⋯+nhxn−1+hn]=h→0lim[nxn−1+2n(n−1)xn−2h+⋯+nhxn−1+hn−1]=nxn−1
例子 1
(a) 如果 f ( x ) = x 6 f(x) = x^6 f(x)=x6,则 f ’ ( x ) = 6 x 5 f’(x) = 6x^5 f’(x)=6x5。
(b) 如果 y = x 1000 y = x^{1000} y=x1000,则 y ’ = 1000 x 999 y’ = 1000x^{999} y’=1000x999。
(c) 如果 y = t 4 y = t^4 y=t4,则 d y d t = 4 t 3 \frac{dy}{dt} = 4t^3 dtdy=4t3。
(d) 如果 d d r ( r 3 ) = 3 r 2 \frac{d}{dr} (r^3) = 3r^2 drd(r3)=3r2。
组合函数的导数
常数倍法则
如果 c c c 是一个常数且 f f f 是可微函数,则
d d x [ c f ( x ) ] = c d d x [ f ( x ) ] \frac{d}{dx}[c f(x)] = c \frac{d}{dx}[f(x)] dxd[cf(x)]=cdxd[f(x)]
证明
令 t ( x ) = c f ( x ) t(x) = c f(x) t(x)=cf(x)。则
t ’ ( x ) = lim h → 0 t ( x + h ) − t ( x ) h = lim h → 0 c f ( x + h ) − c f ( x ) h = lim h → 0 [ c f ( x + h ) − f ( x ) h ] = c lim h → 0 f ( x + h ) − f ( x ) h = c f ’ ( x ) \begin{align*}t’(x) = \lim_{h \to 0} \frac{t(x+h) - t(x)}{h} &= \lim_{h \to 0} \frac{c f(x+h) - c f(x)}{h} \\ &= \lim_{h \to 0} \left[ c \frac{f(x+h) - f(x)}{h} \right] \\ &= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ &= c f’(x)\end{align*} t’(x)=h→0limht(x+h)−t(x)=h→0limhcf(x+h)−cf(x)=h→0lim[chf(x+h)−f(x)]=ch→0limhf(x+h)−f(x)=cf’(x)
例子 2
(a) d d x ( 3 x 4 ) = 3 d d x ( x 4 ) = 3 ( 4 x 3 ) = 12 x 3 \frac{d}{dx}(3x^4) = 3 \frac{d}{dx}(x^4) = 3(4x^3) = 12x^3 dxd(3x4)=3dxd(x4)=3(4x3)=12x3
(b) d d x ( 2 x ) = d d x [ 2 ⋅ x ] = 2 ⋅ d d x ( x ) = 2 ⋅ 1 = 2 \frac{d}{dx}(2x) = \frac{d}{dx}[2 \cdot x] = 2 \cdot \frac{d}{dx}(x) = 2 \cdot 1 = 2 dxd(2x)=dxd[2⋅x]=2⋅dxd(x)=2⋅1=2
和法则
如果 f f f 和 t t t 都是可微的,则
d d x [ f ( x ) + t ( x ) ] = d d x [ f ( x ) ] + d d x [ t ( x ) ] \frac{d}{dx}[f(x) + t(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[t(x)] dxd[f(x)+t(x)]=dxd[f(x)]+dxd[t(x)]
用导数符号表示,可以写成:
( f + t ) ′ = f ′ + t ′ (f + t)' = f' + t' (f+t)′=f′+t′
证明
令 F ( x ) = f ( x ) + g ( x ) F(x) = f(x) + g(x) F(x)=f(x)+g(x)。则
F ′ ( x ) = lim h → 0 F ( x + h ) − F ( x ) h = lim h → 0 [ f ( x + h ) + g ( x + h ) ] − [ f ( x ) + g ( x ) ] h = lim h → 0 [ f ( x + h ) − f ( x ) h + g ( x + h ) − g ( x ) h ] = lim h → 0 f ( x + h ) − f ( x ) h + lim h → 0 g ( x + h ) − g ( x ) h = f ′ ( x ) + g ′ ( x ) \begin{align*}F'(x) &= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} \\ &= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h} \\ &= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}\right] \\ &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \\ &= f'(x) + g'(x)\end{align*} F′(x)=h→0limhF(x+h)−F(x)=h→0limh[f(x+h)+g(x+h)]−[f(x)+g(x)]=h→0lim[hf(x+h)−f(x)+hg(x+h)−g(x)]=h→0limhf(x+h)−f(x)+h→0limhg(x+h)−g(x)=f′(x)+g′(x)
和法则可以扩展到任意数量函数的和。例如,使用这个定理两次,我们得到
( f + t + h ) ′ = [ ( f + t ) + h ] ′ = ( f + t ) ′ + h ′ = f ′ + t ′ + h ′ (f + t + h)' = [(f + t) + h]' = (f + t)' + h' = f' + t' + h' (f+t+h)′=[(f+t)+h]′=(f+t)′+h′=f′+t′+h′
差法则
通过将 f − g f - g f−g 写成 f + ( − g ) f + (-g) f+(−g) 并应用和法则和常数倍法则,我们得到如下公式。
d d x [ f ( x ) − g ( x ) ] = d d x [ f ( x ) ] − d d x [ g ( x ) ] \frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)] dxd[f(x)−g(x)]=dxd[f(x)]−dxd[g(x)]
常数倍法则、和法则和差法则可以与幂法则结合,来求任何多项式的导数,如下例所示。
例子 3
d d x ( x 8 + 12 x 5 − 24 x 4 + 10 x 3 − 26 x + 5 ) = d d x ( x 8 ) + 12 d d x ( x 5 ) − 24 d d x ( x 4 ) + 10 d d x ( x 3 ) − 26 d d x ( x ) + d d x ( 5 ) = 8 x 7 + 12 ( 5 x 4 ) − 24 ( 4 x 3 ) + 10 ( 3 x 2 ) − 26 ( 1 ) + 0 = 8 x 7 + 60 x 4 − 96 x 3 + 30 x 2 − 26 \begin{align*} & \frac{d}{dx}(x^8 + 12x^5 - 24x^4 + 10x^3 - 26x + 5) \\ &= \frac{d}{dx}(x^8) + 12 \frac{d}{dx}(x^5) - 24 \frac{d}{dx}(x^4) + 10 \frac{d}{dx}(x^3) - 26 \frac{d}{dx}(x) + \frac{d}{dx}(5)\\ &= 8x^7 + 12(5x^4) - 24(4x^3) + 10(3x^2) - 26(1) + 0 \\ &= 8x^7 + 60x^4 - 96x^3 + 30x^2 - 26\end{align*} dxd(x8+12x5−24x4+10x3−26x+5)=dxd(x8)+12dxd(x5)−24dxd(x4)+10dxd(x3)−26dxd(x)+dxd(5)=8x7+12(5x4)−24(4x3)+10(3x2)−26(1)+0=8x7+60x4−96x3+30x2−26
例子 4
求曲线 y = x 4 − 6 x 2 + 4 y = x^4 - 6x^2 + 4 y=x4−6x2+4 上切线为水平线的点。
解
水平切线出现在导数为零的地方。我们有
d y d x = d d x ( x 4 ) − 6 d d x ( x 2 ) + d d x ( 4 ) = 4 x 3 − 12 x = 4 x ( x 2 − 3 ) \frac{dy}{dx} = \frac{d}{dx}(x^4) - 6 \frac{d}{dx}(x^2) + \frac{d}{dx}(4) = 4x^3 - 12x = 4x(x^2 - 3) dxdy=dxd(x4)−6dxd(x2)+dxd(4)=4x3−12x=4x(x2−3)
因此,当 x = 0 x = 0 x=0 或 x 2 − 3 = 0 x^2 - 3 = 0 x2−3=0 时,即 x = ± 3 x = \pm\sqrt{3} x=±3,导数为零。因此,给定曲线在 x = 0 , 3 , − 3 x = 0, \sqrt{3}, -\sqrt{3} x=0,3,−3 时有水平切线。相应的点是 ( 0 , 4 ) (0, 4) (0,4), ( 3 , − 5 ) (\sqrt{3}, -5) (3,−5) 和 ( − 3 , − 5 ) (-\sqrt{3}, -5) (−3,−5)。
例子 5
粒子的运动方程是 s = 2 t 3 − 5 t 2 + 13 t + 4 s = 2t^3 - 5t^2 + 13t + 4 s=2t3−5t2+13t+4,其中 s s s 的单位是厘米, t t t 的单位是秒。求加速度作为时间的函数。2秒后的加速度是多少?
解
速度和加速度是
v ( t ) = d s d t = 6 t 2 − 10 t + 13 v(t) = \frac{ds}{dt} = 6t^2 - 10t + 13 v(t)=dtds=6t2−10t+13
a ( t ) = d v d t = 12 t − 10 a(t) = \frac{dv}{dt} = 12t - 10 a(t)=dtdv=12t−10
2秒后的加速度是 a ( 2 ) = 12 ( 2 ) − 10 = 24 − 10 = 14 cm/s 2 a(2) = 12(2) - 10 = 24 - 10 = 14 \text{ cm/s}^2 a(2)=12(2)−10=24−10=14 cm/s2
乘积法则
如果 f f f 和 t t t 都是可微的,则
d d x [ f ( x ) g ( x ) ] = f ( x ) d d x [ g ( x ) ] + t ( x ) d d x [ f ( x ) ] \frac{d}{dx}[f(x) g(x)] = f(x) \frac{d}{dx}[g(x)] + t(x) \frac{d}{dx}[f(x)] dxd[f(x)g(x)]=f(x)dxd[g(x)]+t(x)dxd[f(x)]
证明
令 F ( x ) = f ( x ) t ( x ) F(x) = f(x)t(x) F(x)=f(x)t(x)。则
F ′ ( x ) = lim h → 0 F ( x + h ) − F ( x ) h = lim h → 0 f ( x + h ) t ( x + h ) − f ( x ) t ( x ) h F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{f(x+h)t(x+h) - f(x)t(x)}{h} F′(x)=h→0limhF(x+h)−F(x)=h→0limhf(x+h)t(x+h)−f(x)t(x)
为了求解这个极限,我们希望像在和法则的证明中那样,将函数 f f f 和 g g g 分开。我们可以通过在分子中加上和减去 f ( x + h ) g ( x ) f(x+h)g(x) f(x+h)g(x) 来实现这种分离:
F ′ ( x ) = lim h → 0 f ( x + h ) t ( x + h ) − f ( x + h ) g ( x ) + f ( x + h ) g ( x ) − f ( x ) g ( x ) h = lim h → 0 [ f ( x + h ) g ( x + h ) − f ( x + h ) g ( x ) h + f ( x + h ) g ( x ) − f ( x ) g ( x ) h ] = lim h → 0 [ f ( x + h ) g ( x + h ) − g ( x ) h + g ( x ) f ( x + h ) − f ( x ) h ] = f ( x ) lim h → 0 t ( x + h ) − g ( x ) h + g ( x ) lim h → 0 f ( x + h ) − f ( x ) h = f ( x ) g ′ ( x ) + g ( x ) f ′ ( x ) \begin{align*}F'(x) &= \lim_{h \to 0} \frac{f(x+h)t(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \left[\frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \frac{f(x+h)g(x) - f(x)g(x)}{h}\right] \\ &= \lim_{h \to 0} \left[f(x+h) \frac{g(x+h) - g(x)}{h} + g(x) \frac{f(x+h) - f(x)}{h}\right] \\ &= f(x) \lim_{h \to 0} \frac{t(x+h) - g(x)}{h} + g(x) \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ &= f(x) g'(x) + g(x) f'(x)\end{align*} F′(x)=h→0limhf(x+h)t(x+h)−f(x+h)g(x)+f(x+h)g(x)−f(x)g(x)=h→0lim[hf(x+h)g(x+h)−f(x+h)g(x)+hf(x+h)g(x)−f(x)g(x)]=h→0lim[f(x+h)hg(x+h)−g(x)+g(x)hf(x+h)−f(x)]=f(x)h→0limht(x+h)−g(x)+g(x)h→0limhf(x+h)−f(x)=f(x)g′(x)+g(x)f′(x)
简而言之,乘积法则表明,两个函数的乘积的导数是第一个函数乘以第二个函数的导数加上第二个函数乘以第一个函数的导数。
例子 6
如果 h ( x ) = x g ( x ) h(x) = x g(x) h(x)=xg(x) 并且已知 g ( 3 ) = 5 g(3) = 5 g(3)=5 和 g ′ ( 3 ) = − 2 g'(3) = -2 g′(3)=−2,求 h ′ ( 3 ) h'(3) h′(3)。
解
应用乘积法则,我们得到
h ′ ( x ) = d d x [ x g ( x ) ] = x d d x [ g ( x ) ] + g ( x ) d d x [ x ] = x g ′ ( x ) + g ( x ) ⋅ 1 h'(x) = \frac{d}{dx}[x g(x)] = x \frac{d}{dx}[g(x)] + g(x) \frac{d}{dx}[x] = x g'(x) + g(x) \cdot 1 h′(x)=dxd[xg(x)]=xdxd[g(x)]+g(x)dxd[x]=xg′(x)+g(x)⋅1
因此,
h ′ ( 3 ) = 3 t ′ ( 3 ) + t ( 3 ) = 3 ⋅ ( − 2 ) + 5 = − 6 + 5 = − 1 h'(3) = 3 t'(3) + t(3) = 3 \cdot (-2) + 5 = -6 + 5 = -1 h′(3)=3t′(3)+t(3)=3⋅(−2)+5=−6+5=−1
商法则
如果 f f f 和 g g g 可微,则
d d x ( f ( x ) g ( x ) ) = g ( x ) d d x [ f ( x ) ] − f ( x ) d d x [ g ( x ) ] [ g ( x ) ] 2 \frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{g(x) \frac{d}{dx}[f(x)] - f(x) \frac{d}{dx}[g(x)]}{[g(x)]^2} dxd(g(x)f(x))=[g(x)]2g(x)dxd[f(x)]−f(x)dxd[g(x)]
用导数符号表示:
( f g ) ′ = g f ′ − f g ′ g 2 \left(\frac{f}{g}\right)' = \frac{g f' - f g'}{g^2} (gf)′=g2gf′−fg′
证明
令 F ( x ) = f ( x ) g ( x ) F(x) = \frac{f(x)}{g(x)} F(x)=g(x)f(x)。则
F ′ ( x ) = lim h → 0 F ( x + h ) − F ( x ) h = lim h → 0 f ( x + h ) g ( x + h ) − f ( x ) g ( x ) h = lim h → 0 f ( x + h ) g ( x ) − f ( x ) g ( x + h ) h g ( x ) g ( x + h ) \begin{align*}F'(x) &= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} \\ &= \lim_{h \to 0} \frac{f(x+h) g(x) - f(x) g(x+h)}{h g(x) g(x+h)}\end{align*} F′(x)=h→0limhF(x+h)−F(x)=h→0limhg(x+h)f(x+h)−g(x)f(x)=h→0limhg(x)g(x+h)f(x+h)g(x)−f(x)g(x+h)
我们可以通过在分子中加上和减去 f ( x ) g ( x ) f(x) g(x) f(x)g(x) 来将 f f f 和 g g g 分开:
F ′ ( x ) = lim h → 0 f ( x + h ) g ( x ) − f ( x ) g ( x ) + f ( x ) g ( x ) − f ( x ) g ( x + h ) h g ( x ) g ( x + h ) = lim h → 0 [ f ( x + h ) g ( x ) − f ( x ) g ( x ) h g ( x ) g ( x + h ) + f ( x ) g ( x ) − f ( x ) g ( x + h ) h g ( x ) g ( x + h ) ] = lim h → 0 [ g ( x ) f ( x + h ) − f ( x ) h g ( x ) g ( x + h ) − f ( x ) g ( x + h ) − g ( x ) h g ( x ) g ( x + h ) ] = g ( x ) f ′ ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 \begin{align*}F'(x) &= \lim_{h \to 0} \frac{f(x+h) g(x) - f(x) g(x) + f(x) g(x) - f(x) g(x+h)}{h g(x) g(x+h)} \\ &= \lim_{h \to 0} \left[ \frac{f(x+h) g(x) - f(x) g(x)}{h g(x) g(x+h)} + \frac{f(x) g(x) - f(x) g(x+h)}{h g(x) g(x+h)} \right] \\ &= \lim_{h \to 0} \left[ \frac{g(x) \frac{f(x+h) - f(x)}{h}}{g(x) g(x+h)} - \frac{f(x) \frac{g(x+h) - g(x)}{h}}{g(x) g(x+h)} \right] \\ &= \frac{g(x) f'(x) - f(x) g'(x)}{\left[g(x)\right]^2}\end{align*} F′(x)=h→0limhg(x)g(x+h)f(x+h)g(x)−f(x)g(x)+f(x)g(x)−f(x)g(x+h)=h→0lim[hg(x)g(x+h)f(x+h)g(x)−f(x)g(x)+hg(x)g(x+h)f(x)g(x)−f(x)g(x+h)]=h→0lim[g(x)g(x+h)g(x)hf(x+h)−f(x)−g(x)g(x+h)f(x)hg(x+h)−g(x)]=[g(x)]2g(x)f′(x)−f(x)g′(x)
因为 g g g 在 x x x 处是连续的,所以 lim h → 0 g ( x + h ) = g ( x ) \lim_{h \to 0} g(x+h) = g(x) limh→0g(x+h)=g(x)。
用语言描述,商法则表示一个商的导数是分母乘以分子导数减去分子乘以分母导数,然后除以分母的平方。
例子 7
令 y = x 3 + 1 x 2 + 2 x + 1 y = \frac{x^3 + 1}{x^2 + 2x + 1} y=x2+2x+1x3+1。则
y ′ = ( x 2 + 2 x + 1 ) d d x ( x 3 + 1 ) − ( x 3 + 1 ) d d x ( x 2 + 2 x + 1 ) ( x 2 + 2 x + 1 ) 2 = ( x 2 + 2 x + 1 ) ( 3 x 2 ) − ( x 3 + 1 ) ( 2 x + 2 ) ( x 2 + 2 x + 1 ) 2 = ( 3 x 4 + 6 x 3 + 3 x 2 ) − ( 2 x 4 + 2 x 3 + 2 x + 2 x 3 + 2 ) ( x 2 + 2 x + 1 ) 2 = 3 x 4 + 6 x 3 + 3 x 2 − 2 x 4 − 4 x 3 − 2 x 3 − 2 x − 2 ( x 2 + 2 x + 1 ) 2 = x 4 + 2 x 3 + 3 x 2 − 2 x − 2 ( x 2 + 2 x + 1 ) 2 \begin{align*}y' &= \frac{(x^2 + 2x + 1) \frac{d}{dx}(x^3 + 1) - (x^3 + 1) \frac{d}{dx}(x^2 + 2x + 1)}{(x^2 + 2x + 1)^2} \\ &= \frac{(x^2 + 2x + 1)(3x^2) - (x^3 + 1)(2x + 2)}{(x^2 + 2x + 1)^2} \\ &= \frac{(3x^4 + 6x^3 + 3x^2) - (2x^4 + 2x^3 + 2x + 2x^3 + 2)}{(x^2 + 2x + 1)^2} \\ &= \frac{3x^4 + 6x^3 + 3x^2 - 2x^4 - 4x^3 - 2x^3 - 2x - 2}{(x^2 + 2x + 1)^2} \\ &= \frac{x^4 + 2x^3 + 3x^2 - 2x - 2}{(x^2 + 2x + 1)^2}\end{align*} y′=(x2+2x+1)2(x2+2x+1)dxd(x3+1)−(x3+1)dxd(x2+2x+1)=(x2+2x+1)2(x2+2x+1)(3x2)−(x3+1)(2x+2)=(x2+2x+1)2(3x4+6x3+3x2)−(2x4+2x3+2x+2x3+2)=(x2+2x+1)23x4+6x3+3x2−2x4−4x3−2x3−2x−2=(x2+2x+1)2x4+2x3+3x2−2x−2
注意
不要每次看到商都使用商法则。有时候,先重写商使其形式更简化以便求导会更容易。例如,尽管可以使用商法则来求导函数 F ( x ) = 3 x 2 + 1 2 x F(x) = \frac{3x^2 + 1}{2x} F(x)=2x3x2+1,但更简单的方法是先进行除法,写成
F ( x ) = 3 x 2 2 x + 1 2 x = 3 x 2 + 1 2 x F(x) = \frac{3x^2}{2x} + \frac{1}{2x} = \frac{3x}{2} + \frac{1}{2x} F(x)=2x3x2+2x1=23x+2x1
然后再求导。
一般幂函数
商法则可以用来将幂法则扩展到指数为负整数的情况。
如果 n n n 是正整数,则
d d x ( x − n ) = − n x − n − 1 \frac{d}{dx}(x^{-n}) = -nx^{-n-1} dxd(x−n)=−nx−n−1
证明
d d x ( x − n ) = d d x ( 1 x n ) = x n ⋅ d d x ( 1 ) − 1 ⋅ d d x ( x n ) ( x n ) 2 = 0 − n x n − 1 x 2 n = − n x n − 1 x 2 n = − n x − n − 1 \begin{align*}\frac{d}{dx}(x^{-n}) &= \frac{d}{dx}\left(\frac{1}{x^n}\right) \\ &= \frac{x^n \cdot \frac{d}{dx}(1) - 1 \cdot \frac{d}{dx}(x^n)}{(x^n)^2} = \frac{0 - nx^{n-1}}{x^{2n}} \\ &= -n \frac{x^{n-1}}{x^{2n}} = -n x^{-n-1}\end{align*} dxd(x−n)=dxd(xn1)=(xn)2xn⋅dxd(1)−1⋅dxd(xn)=x2n0−nxn−1=−nx2nxn−1=−nx−n−1
例子 8
(a) 如果 y = 1 x y = \frac{1}{x} y=x1,则 d y d x = d d x ( x − 1 ) = − x − 2 = − 1 x 2 \frac{dy}{dx} = \frac{d}{dx}(x^{-1}) = -x^{-2} = -\frac{1}{x^2} dxdy=dxd(x−1)=−x−2=−x21
(b) d d t ( 6 t 3 ) = 6 d d t ( t − 3 ) = 6 ⋅ ( − 3 t − 4 ) = − 18 t − 4 \frac{d}{dt}\left(\frac{6}{t^3}\right) = 6 \frac{d}{dt}(t^{-3}) = 6 \cdot (-3t^{-4}) = -18t^{-4} dtd(t36)=6dtd(t−3)=6⋅(−3t−4)=−18t−4
到目前为止,我们知道当指数 n n n 是正整数或负整数时,幂法则成立。如果 n = 0 n = 0 n=0,则 x 0 = 1 x^0 = 1 x0=1,其导数为 0 0 0。因此,幂法则对任何整数 n n n 都成立。那么如果指数是分数呢?在前面章节得例子中,我们发现
d d x ( x 1 / 2 ) = 1 2 x − 1 / 2 \frac{d}{dx}(x^{1/2}) = \frac{1}{2}x^{-1/2} dxd(x1/2)=21x−1/2
这表明幂法则在 n = 1 / 2 n = 1/2 n=1/2 时也成立。事实上,它对任何实数 n n n 都成立,我们将在后面的章节中证明这一点。
幂法则(一般版本)
如果 n n n 是任意实数,则
d d x ( x n ) = n x n − 1 \frac{d}{dx}(x^n) = nx^{n-1} dxd(xn)=nxn−1
例子 9
(a) 如果 f ( x ) = x π f(x) = x^{\pi} f(x)=xπ,则
f ′ ( x ) = π x π − 1 f'(x) = \pi x^{\pi - 1} f′(x)=πxπ−1
(b) 如果 y = 1 3 x 2 y = \frac{1}{3x^2} y=3x21,则
d y d x = d d x ( 3 − 1 x − 2 ) = 3 − 1 ⋅ − 2 x − 3 = − 2 3 x 3 \frac{dy}{dx} = \frac{d}{dx}(3^{-1}x^{-2}) = 3^{-1} \cdot -2x^{-3} = -\frac{2}{3x^3} dxdy=dxd(3−1x−2)=3−1⋅−2x−3=−3x32
例子 10
求函数 f ( t ) = t a + b t f(t) = t \sqrt{a + bt} f(t)=ta+bt 的导数。
解
使用乘积法则,我们有
f ′ ( t ) = t d d t ( a + b t ) + a + b t d d t ( t ) f'(t) = t \frac{d}{dt}(\sqrt{a + bt}) + \sqrt{a + bt} \frac{d}{dt}(t) f′(t)=tdtd(a+bt)+a+btdtd(t)
= t ⋅ b 2 a + b t + a + b t ⋅ 1 = t \cdot \frac{b}{2\sqrt{a + bt}} + \sqrt{a + bt} \cdot 1 =t⋅2a+btb+a+bt⋅1
= b t 2 a + b t + a + b t = \frac{bt}{2\sqrt{a + bt}} + \sqrt{a + bt} =2a+btbt+a+bt
微分法则使我们能够找到切线,而无需求助于导数的定义。它还使我们能够找到法线。曲线 C C C 在点 P P P 处的法线是通过 P P P 的与 P P P 处的切线垂直的线。(在光学研究中,需要考虑光线与透镜法线之间的角度。)
例子 11
求曲线 y = x 1 + x 2 y = \frac{\sqrt{x}}{1 + x^2} y=1+x2x 在点 ( 1 , 1 2 ) (1, \frac{1}{2}) (1,21) 处的切线和法线的方程。
解
根据商法则,我们有
d y d x = ( 1 + x 2 ) ⋅ d d x ( x ) − x ⋅ d d x ( 1 + x 2 ) ( 1 + x 2 ) 2 = ( 1 + x 2 ) ⋅ 1 2 x − x ⋅ 2 x ( 1 + x 2 ) 2 \frac{dy}{dx} = \frac{(1 + x^2) \cdot \frac{d}{dx}(\sqrt{x}) - \sqrt{x} \cdot \frac{d}{dx}(1 + x^2)}{(1 + x^2)^2} = \frac{(1 + x^2) \cdot \frac{1}{2\sqrt{x}} - \sqrt{x} \cdot 2x}{(1 + x^2)^2} dxdy=(1+x2)2(1+x2)⋅dxd(x)−x⋅dxd(1+x2)=(1+x2)2(1+x2)⋅2x1−x⋅2x
简化得
d y d x = 1 + x 2 2 x − 2 x x ( 1 + x 2 ) 2 = 1 + x 2 − 4 x 2 2 x ( 1 + x 2 ) 2 = 1 − 3 x 2 2 x ( 1 + x 2 ) 2 = 1 − 3 x 2 2 x ( 1 + x 2 ) 2 \frac{dy}{dx} = \frac{\frac{1 + x^2}{2\sqrt{x}} - 2x\sqrt{x}}{(1 + x^2)^2} = \frac{\frac{1 + x^2 - 4x^2}{2\sqrt{x}}}{(1 + x^2)^2} = \frac{\frac{1 - 3x^2}{2\sqrt{x}}}{(1 + x^2)^2} = \frac{1 - 3x^2}{2\sqrt{x}(1 + x^2)^2} dxdy=(1+x2)22x1+x2−2xx=(1+x2)22x1+x2−4x2=(1+x2)22x1−3x2=2x(1+x2)21−3x2
所以在点 ( 1 , 1 2 ) (1, \frac{1}{2}) (1,21) 处切线的斜率是
d y d x ∣ x = 1 = 1 − 3 ⋅ 1 2 2 ⋅ 1 ⋅ ( 1 + 1 2 ) 2 = 1 − 3 2 ⋅ 1 ⋅ ( 1 + 1 ) 2 = − 2 2 ⋅ 4 = − 2 8 = − 1 4 \left. \frac{dy}{dx} \right|_{x = 1} = \frac{1 - 3 \cdot 1^2}{2 \cdot \sqrt{1} \cdot (1 + 1^2)^2} = \frac{1 - 3}{2 \cdot 1 \cdot (1 + 1)^2} = \frac{-2}{2 \cdot 4} = \frac{-2}{8} = -\frac{1}{4} dxdy x=1=2⋅1⋅(1+12)21−3⋅12=2⋅1⋅(1+1)21−3=2⋅4−2=8−2=−41
我们使用点斜式来写在点 ( 1 , 1 2 ) (1, \frac{1}{2}) (1,21) 处切线的方程:
y − 1 2 = − 1 4 ( x − 1 ) 或 y = − 1 4 x + 3 4 y - \frac{1}{2} = -\frac{1}{4}(x - 1) \quad \text{或} \quad y = -\frac{1}{4}x + \frac{3}{4} y−21=−41(x−1)或y=−41x+43
在点 ( 1 , 1 2 ) (1, \frac{1}{2}) (1,21) 处法线的斜率是 − 1 4 -\frac{1}{4} −41 的负倒数,即 4,因此法线的方程是
y − 1 2 = 4 ( x − 1 ) 或 y = 4 x − 7 2 y - \frac{1}{2} = 4(x - 1) \quad \text{或} \quad y = 4x - \frac{7}{2} y−21=4(x−1)或y=4x−27
曲线及其切线和法线如图所示。
例子 12
双曲线 x y = 12 xy = 12 xy=12 上的哪些点处的切线与直线 3 x + y = 0 3x + y = 0 3x+y=0 平行?
解
由于 x y = 12 xy = 12 xy=12 可以写成 y = 12 x y = \frac{12}{x} y=x12,我们有
d y d x = d d x ( 12 x ) = 12 ⋅ d d x ( x − 1 ) = 12 ⋅ ( − x − 2 ) = − 12 x 2 \frac{dy}{dx} = \frac{d}{dx} \left( \frac{12}{x} \right) = 12 \cdot \frac{d}{dx} \left( x^{-1} \right) = 12 \cdot (-x^{-2}) = -\frac{12}{x^2} dxdy=dxd(x12)=12⋅dxd(x−1)=12⋅(−x−2)=−x212
令所求点的 x x x 坐标为 a a a,则切线的斜率为
− 12 a 2 -\frac{12}{a^2} −a212
切线与直线 3 x + y = 0 3x + y = 0 3x+y=0 平行,这意味着两条直线的斜率相同。直线 3 x + y = 0 3x + y = 0 3x+y=0 的斜率为 − 3 -3 −3。因此,
− 12 a 2 = − 3 -\frac{12}{a^2} = -3 −a212=−3
解这个方程,我们得到
12 a 2 = 3 \frac{12}{a^2} = 3 a212=3
a 2 = 12 3 a^2 = \frac{12}{3} a2=312
a 2 = 4 a^2 = 4 a2=4
a = 2 或 a = − 2 a = 2 \quad \text{或} \quad a = -2 a=2或a=−2
因此, x x x 坐标为 2 2 2 或 − 2 -2 −2 的点上,切线与直线 3 x + y = 0 3x + y = 0 3x+y=0 平行。
对应的 y y y 坐标为:
当 a = 2 a = 2 a=2 时, y = 12 2 = 6 y = \frac{12}{2} = 6 y=212=6,
当 a = − 2 a = -2 a=−2 时, y = 12 − 2 = − 6 y = \frac{12}{-2} = -6 y=−212=−6。
所以切线与直线 3 x + y = 0 3x + y = 0 3x+y=0 平行的点是 ( 2 , 6 ) (2, 6) (2,6) 和 ( − 2 , − 6 ) (-2, -6) (−2,−6)。
我们总结一下迄今为止学到的微分公式如下:
微分公式表
d d x ( c ) = 0 d d x ( x n ) = n x n − 1 d d x ( c f ) = c f ′ ( f + g ) ′ = f ′ + g ′ ( f − g ) ′ = f ′ − g ′ ( f g ) ′ = f g ′ + g f ′ ( f g ) ′ = g f ′ − f g ′ g 2 \begin{aligned} &\frac{d}{dx}(c) = 0 \\ &\frac{d}{dx}(x^n) = nx^{n-1} \\ &\frac{d}{dx}(cf) = c f' \\ &(f + g)' = f' + g' \\ &(f - g)' = f' - g' \\ &(f g)' = f g' + g f' \\ &\left(\frac{f}{g}\right)' = \frac{g f' - f g'}{g^2} \\ \end{aligned} dxd(c)=0dxd(xn)=nxn−1dxd(cf)=cf′(f+g)′=f′+g′(f−g)′=f′−g′(fg)′=fg′+gf′(gf)′=g2gf′−fg′