【征服数据结构】:期末通关秘籍

【征服数据结构】:期末通关秘籍

  • 💘 数据结构的基本概念
    • 😈 数据结构的基本概念
    • 😈 逻辑结构和存储结构的区别和联系
    • 😈 算法及其特性
    • 😈 简答题
  • 💘 线性表(链表、单链表)
    • 😈 大题1
      • ❄️ 题目解析
      • ❄️ 算法思想和时间复杂度
      • ❄️ 代码实现
      • ❄️ 某搜题软件上的答案
    • 😈 大题2
      • ❄️ 答案解析
  • 💘 栈和队列
    • 😈 大题1
      • ❄️ 题目分析
      • ❄️ 答案解析
      • ❄️ 标准答案(取自某搜题软件)
    • 😈 简答题1
    • 😈 简答题2
  • 💘 树
    • 😈 二叉树的定义、性质和应用
    • 😈 二叉树的先序、中序遍历和后序遍历
    • 😈 已知遍历序列构造二叉树
      • ❄️ 大题1
        • 💑 二叉树如何转换成森林
          • 🐸 二叉树如何转换成树
          • 🐸 将二叉树如何转换成森林
        • 💑 标准答案(出自某搜题软件)
      • ❄️ 大题2
        • 💑 答案解析
        • 💑 标准答案
      • ❄️ 大题3
        • 💑 答案
        • 💑 标准答案
      • ❄️ 简答题1
        • 💑 标准答案
      • ❄️ 简答题2
        • 💑 标准答案
      • ❄️ 简答题3
        • 💑 答案解析
        • 💑 标准答案
    • 😈 森林的先序遍历和中序遍历(可能出选择题)
    • 😈 树转化为二叉树以及森林转化成二叉树
    • 😈 哈夫曼树和哈弗曼编码(这里肯定会出大题)
    • 😈 大题1
      • ❄️ 答案解析
    • 😈 线索二叉树
  • 💘 图
    • 😈 图的连通性问题
    • 😈 出度和入度
    • 😈 带权无向图的最小生成树Prim、KrusKal算法
    • 😈 有向无环图、拓扑排序
    • 😈 大题1
      • ❄️ 答案解析
    • 😈 大题2
      • ❄️ 标准答案
    • 😈 关键路径和关键活动
      • ❄️ 大题2
        • 💑 答案解析
        • 💑 标准答案
    • 😈 图的遍历(广度优先和深度优先)
    • 😈 最短路径
      • ❄️ 大题3
        • 💑 答案解析
        • 💑 标准答案
  • 💘 查找
    • 😈 静态查找表:顺序查找、折半查找
      • ❄️ 大题1
        • 💑 答案解析
        • 💑 标准答案
    • 😈 动态查找表: 二叉排序树、二叉平衡树、m阶B树
      • ❄️ 二叉排序树
      • ❄️ 二叉平衡树
      • ❄️ 大题1
        • 💑 答案解析
        • 💑 标准答案
    • 😈 B树
      • ❄️ 大题2
        • 💑 答案解析
    • 😈 哈希表
      • ❄️ 哈希表的长度、哈希表的装填因子等
      • ❄️ 常用的构造哈希函数的方法
      • ❄️ 处理冲突的方法
      • ❄️ 大题3
        • 💑 答案解析

前言:本篇博客只做博主复习使用,不做其它,若有问题,也欢迎大家留言反馈。所有例题均为ZZULI往年期末题,正当途径获得。最后一章排序章节较简单,博主没有单独列出。

参考&鸣谢
AVL树的插入操作(旋转)图解 MaxBruce
解决Hash(哈希表)冲突的四种方案 FrozenPenguin
图——关键路径 傅华涛Fu
拓扑排序详解 Dream of maid
生成树(基础) 莫忘、莫念
图的连通性问题 _Tham
数据结构】树、二叉树和森林的相互转换 Jacky_Feng
【专题】树和森林的遍历 ᝰꫛꪮꪮꫜ hm

💘 数据结构的基本概念

😈 数据结构的基本概念

数据结构是计算机存储、组织数据的方式数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。—选自百度百科

😈 逻辑结构和存储结构的区别和联系

在这里插入图片描述

😈 算法及其特性

在这里插入图片描述

😈 简答题

在这里插入图片描述

在这里插入图片描述
2)
在这里插入图片描述
3)

在这里插入图片描述

💘 线性表(链表、单链表)

顺序存储结构及其基本操作:请看博主这篇博客。

链式存储结构及其基本操作:请看博主这篇博客

😈 大题1

在这里插入图片描述

❄️ 题目解析

在这里插入图片描述

❄️ 算法思想和时间复杂度

  • 题目说了,需要我们释放结点的空间。

首先创建两个结点指针变量precur,让pre初始化为Headcur初始化为Head->next,开始遍历带头单链表,分为两种情况:

  1. 如果pre指针的数据域和cur指针的数据域相等,那我们就删除掉cur指针指向的结点(释放结点空间后,完成链接即可),删除cur之前,保存cur->next给变量next_,删除完之后更新curnext_pre不用更新,因为当前的值还可能和pre的数据域相等。
  2. 如果pre指针的数据域和cur指针的数据域不相等,更新这两个指针,pre更新为curcur更新为cur->next

最后cur结点指针指向NULL,循环结束。

时间复杂度是 O ( l o g N ) O(logN) O(logN)

❄️ 代码实现

void remove(LinkList Head)
{LinkList pre = Head;//前一个结点指针LinkList cur = Head->next;//后一个结点指针while (cur != NULL){if (pre->data != cur->data)//如果pre和cur的data不相等{pre = cur;cur = cur->next;}else//如果pre和cur的data相等{//先删除掉cur结点LinkList node = cur->next;//保存cur->next指针结点free(cur);//释放结点空间pre->next = node;//链接cur = node;//更新cur指针}}
}

❄️ 某搜题软件上的答案

在这里插入图片描述

😈 大题2

在这里插入图片描述

❄️ 答案解析

在写代码前,我们还是画图来分析以下,删除链表结点是如何删除的:

在这里插入图片描述
代码示例(C语言实现):

LinkList deleteodd(LinkList L)
{LinkList pre = L;//pre是当前遍历位置的前一个结点指针LinkList cur = L->next;//cur变量是当前遍历位置的结点指针while (cur != NULL)//cur为空就停止循环{if (cur->data % 2 == 0)//如果当前结点指针指向的结点的数据域是偶数,正常更新{pre = cur;cur = cur->next;}else//否则,就删除当前结点{//先保存当前结点的下一个结点指针,防止将当前结点释放后无法找到下一个结点的指针LinkList next_ = cur->next;free(cur);pre->next = next_;//更新pre的nextcur = next_;//更新cur}}return L;//返回头节点
}

💘 栈和队列

栈和队列的基本特征:栈里面的数据后进先出。队列里的数据先进先出。

它们的逻辑结构都是线性结构。可以用线性表或者单链表来实现。详细请看博主这篇博客

栈和队列作为线性结构中比较典型的两个结构(应用多),是很可能出一道大题的,下面我们来看一道大题(ZZULI往年期末题):

😈 大题1

在这里插入图片描述

❄️ 题目分析

在这里插入图片描述
上图忘记说明一点了,终态不为空也不叫满足要求,需要返回false。

❄️ 答案解析

在这里插入图片描述
2. 代码实现:

bool is_valid(char* s)
{int cnt_i = 0;//统计入栈的次数int cnt_o = 0;//统计出栈的次数int i = 0;while (s[i] != '\0'){if (s[i] == 'O')cnt_o++;elsecnt_i++;if (cnt_i < cnt_o){std::cout << "序列非法“ << std::endl;//用printf打印也可以return false; }i++;}if (cnt_i > cnt_o){std::cout << "序列非法“ << std::endl;//用printf打印也可以return false;}std::cout << "序列合法" << std::endl;return true;
}

上述代码应该是C++语言实现,因为C语言中没有bool这个类型。打印处使用printf也可以,因为c++语言兼容C语言。

❄️ 标准答案(取自某搜题软件)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

😈 简答题1

在这里插入图片描述
题目让我们描述栈和队列的逻辑结构和特性,并分别举出两个应用实例。

栈和队列的逻辑结构都是线性结构,栈具有后进先出的特性,意思是后面入栈的元素,在进行出栈操作时会先出去。
队列具有先进先出的特性,意思是先入队列的元素,在进行出队列操作时,会先出去。

应用示例:栈:递归、后缀表达式求值。队列:二叉树的层次遍历、图的广度优先搜索。

😈 简答题2

在这里插入图片描述

  1. 首先来回答第一个问题
    什么是循环队列?

循环队列是队列的一种,普通的队列如果采用数组的方式存储的话,为了不挪动数据,删除队列元素时,我们可能会直接将队列首元素的下标后移,这样就会造成一个问题,就是队列的空间在减少,继续入队列(尾插)如果数组的空间满了,这个时候如果进行过出队列,就会造成队列的元素小于数组实际的大小的情况。循环队列就是为了解决这种问题,让空间的利用大大提高。我们只需要把一个数组逻辑上想象成首尾相接即可。

用文字描述可能很抽象,我们画图来解释:

在这里插入图片描述

  1. 其次就是循环队列的判空和判满问题。
    先说结论: front = rear时为空
    (rear+1)%n = front时为满,n为数组的大小。我们画图来分析一下为什么是这样:
    在这里插入图片描述

贴一个 标准答案:

  1. 在顺序队列中由于数组空间不够而产生的溢出叫真溢出;顺序队列因多次入队列和出队列操作后出现的有存储空间但不能进入队列操作的溢出称为假溢出。 假溢出是由于队尾rear的值和队头front的值不能由所定义数组下界值自动转为数组上界值而产生的。其解决办法有二一是将队列元素向前“平移”(占用0至rear-front-1);二是将队列看成首尾相连即循环队列[0…m-1]。
  2. 在循环队列下仍定义。front=rear时为队空而判断队满则用两种办法: 一是用“牺牲一个单元”即rear+1=front(准确记是(rear+1)%m=frontm是队列容量)时为队满。
    另一种解法是“设标记”方法如设标记tag,tag等于0的情况下若删除时导致front=tear为队空;tag=1的情况下若因插入导致front=rear则为队满。

💘 树

如果你对二叉树什么都不了解,可以看博主,这篇博客

😈 二叉树的定义、性质和应用

  1. 定义

    二叉树是一种特殊的树,它的每个结点至多有两个子树,它的子树是有顺序的,即使一个结点只有一个子树,你也要指明是左子树还是右子树。

2)性质

在这里插入图片描述

3)应用

在这里插入图片描述

😈 二叉树的先序、中序遍历和后序遍历

这里在上述博客链接里面的文章里我们也有详细的叙述,这里我们在简单的画图叙述一下:

在这里插入图片描述

😈 已知遍历序列构造二叉树

一般都是给一个中序遍历序列、后序和前序遍历序列给一个,让你构造二叉树。

中序遍历序列的作用是划分某个结点的左子树和右子树。
后序或者前序遍历序列的作用是确定当前根结点。

❄️ 大题1

我们通过题目来讲解

在这里插入图片描述
在这里插入图片描述

💑 二叉树如何转换成森林
🐸 二叉树如何转换成树

要学会二叉树转换成森林,我们首先要学会将一棵二叉树转化成树。

我们画图来详细说明其步骤:

在这里插入图片描述

🐸 将二叉树如何转换成森林

很简单,一共有两步:

  1. 删除当前二叉树根节点与其右孩子结点的连线(使其独立成一个新的二叉树),然后看这个新的二叉树有没有右孩子结点,如果有继续删除连线。
  2. 将上述独立出来的所有二叉树都转化为树。

下面我们演示一下我们本题二叉树转化为森林的过程:

在这里插入图片描述

💑 标准答案(出自某搜题软件)

在这里插入图片描述

❄️ 大题2

在这里插入图片描述

💑 答案解析

本题看着没有什么头绪,只要让根结点存运算符,然后得到它的左子树和右子树求得的值(后序遍历),然后做运算,即可得到整个表达式的值。

代码:


typedef int DataType;typedef struct node
{DataType data;//存储数据char op;//存储运算符(可能有些结点只有运算符或者只有数据)struct node* left;struct node* right;
}*Pnode;float PostOrder(Pnode root)//假设对于是值的结点其运算符是一个特殊符号
{if (!root)//如果root为空return 0;float left_val, right_val = 0;//创建两个临时变量用来保存左边子树和右边子树的值float val = root->data;//返回值,如果当前结点没有左子树和右子树就证明其应该是一个值,而不是运算符left_val = PostOrder(root->left);//先去得到左边子树的值right_val = PostOrder(root->right);//再得到右边子树的值switch (root->op){case '+':val = left_val + right_val;break;case '-':val = left_val - right_val;break;case '*':val = left_val * right_val;break;case '/': val = left_val / right_val;break;default: break;//如果这个}return val;//返回结果
}
💑 标准答案

在这里插入图片描述

❄️ 大题3

在这里插入图片描述

💑 答案

此题和上面一道有重复,我们熟练之后可在这里插入图片描述
以不用那么详细,照着先序遍历序列和中序遍历序列直接画出二叉树即可,就是要注意不要看错了。

💑 标准答案

在这里插入图片描述

❄️ 简答题1

在这里插入图片描述

💑 标准答案

在这里插入图片描述

❄️ 简答题2

在这里插入图片描述
答案:

链域就是指针域,每个结点有四个指针域。

在这里插入图片描述

💑 标准答案

在这里插入图片描述

❄️ 简答题3

在这里插入图片描述

💑 答案解析

在这里插入图片描述

💑 标准答案

在这里插入图片描述

标准答案的边界值对应下图两种情况:

在这里插入图片描述

😈 森林的先序遍历和中序遍历(可能出选择题)

考的不多,不需要作为重点,重点应该放在二叉树的遍历上。
1. 森林的先序遍历

😈 树转化为二叉树以及森林转化成二叉树

我们前面以及介绍过了将二叉树转化成树和将二叉树转化成森林,现在我们来介绍一下将树转化成二叉树以及将森林转化成二叉树:

  1. 将树转化成二叉树:

在这里插入图片描述
2. 将一棵森林转变成二叉树:
在这里插入图片描述

😈 哈夫曼树和哈弗曼编码(这里肯定会出大题)

知识点:

在这里插入图片描述

😈 大题1

这种题比较简单,基本上掌握一下基本套路就完事了。

在这里插入图片描述

❄️ 答案解析

在这里插入图片描述

😈 线索二叉树

线索二叉树就是将一个二叉树线索化的过程。

二叉树中有些左指针和右指针是空的,我们线索化的时候可以把它们利用起来。

  • 无论是前序遍历,中序遍历还是后序遍历,如果一个节点没有左子树就让他的左指针指向他的前驱节点(前面一个要访问的结点),如果一个节点没有右子树,就让他的右指针指向他的后继节点(后面一个要访问的结点)。比较简单我们不再举例子。

💘 图

😈 图的连通性问题

在这里插入图片描述

在这里插入图片描述

😈 出度和入度

出度:某个顶点指向的顶点有几个,它的出度就是几。

入度:某个顶点被多少个顶点指向,它的入度就是几。

😈 带权无向图的最小生成树Prim、KrusKal算法

这两个算法都可以求最小生成树,我们只介绍Prim算法。

生成树:首先只有连通图才有生成树。生成树是所有顶点都连接在一起,但不存在回路的图。因为树就是不存在回路的。

最小生成树:所有生成树中使得各边权值总和最小的那棵生成树叫做最小生成树。

Prim算法的原理:从某一个顶点开始构建生成树,每次将代价最小(到原先的生成树权值
最小)的顶点加入这个生成树中构成新的生成树。(后面我们会用具体的题目来演示)

KrusKal算法的原理:Prime算法更倾向于点之间的关系,所以又叫做加点法。而KrusKal算法更倾向于边,它先将所有边按照权值的大小升序排列,然后依次按照边权值的大小开始建立最小生成树,如果加入当前权值最小的边时会导致出现回路,就舍弃,知道我们加入了n-1条边为止。

😈 有向无环图、拓扑排序

在图论中,如果一个有向图无法从某个顶点出发经过若干条边回到该点,则这个图是一个有向无环图(DAG图)。

拓扑排序的定义:
在有向无环图中,我们将全部活动(顶点和边的关系)排列成一个线性序列,使得这个图中中有弧<i,j>存在 则在这个序列中,i 一定排在j的前面 具有这种线性序列称为拓扑有序序列,相应的拓扑有序排序的算法称为拓扑排序。
拓扑排序的方法:
在这里插入图片描述

😈 大题1

下面题目涉及拓扑序列和最小生成树的构建比较重要,一定得掌握:

在这里插入图片描述

❄️ 答案解析

在这里插入图片描述

😈 大题2

在这里插入图片描述
(1)G1最多有n-1+n-2+n-3+…+1 = n ( n − 1 ) / 2 n(n-1)/2 n(n1)/2。G1最少有n-1条边(不成环,但是连通)。
在这里插入图片描述
(2)和(3):

在这里插入图片描述

❄️ 标准答案

在这里插入图片描述

😈 关键路径和关键活动

关键路径这块的概念比较多。

AOE网:在一个表示工程的带权有向图中,顶点表示事件,用边来表示活动,边上的权值叫做活动持续的时间,这个有向图就是活动的网。

源点:在这个AOE网中,入度为0的点叫做源点。

终点:在这个AOE网,出度为0的点叫做终点。

AOE网的两个性质:

  1. 只有这个顶点的入度的活动都已经结束,这个顶点表示的事件才会开始。
  2. 只有这个顶点的事件开始后,从这个顶点出发的活动才会开始。

由于到达终点前,所有指向这个终点边上的活动都必须结束,所以完成整个工程的最短时间必须是那个源点到终点的最大长度,这个最大长度叫做关键路径。关键路径上的活动叫做关键活动。

事件的最早发生时间(ve(i)): 从源点出发(假设开始是0),该顶点的入度的各个活动中的最长时间(只有这个活动完成了,这个事件才能发生)。

事件的最晚发生时间(vl(i)):从终点出发,要在保证不耽误工期的情况下(关键路径,也就是最短顶点对应的事件完成的时间),在终点的最晚发生时间一定的条件下,倒推其它点的最晚发生时间。如果一个点有两个出度,推出了两个最晚发生时间,要取最小的那个(取更大的那个就有一个事件就不能完成了,工程最晚完成时间就要推迟)。

终点的事件最晚发生时间 = 最早发生时间。

活动的最早发生时间(ee(i)):某个活动开始的前提是那个顶点表示的时间开始了,所以这个值和这个活动所在边的起点的事件最早发生事件相等。

活动的最晚发生时间(el(i)):只有这个顶点的入度的活动都已经结束,这个顶点表示的事件才会开始,所以我们知道这个顶点的最晚发生时间,减去入度的活动的权值,就是对应的该活动的最晚发生时间。

el(i) = ee(i)的活动叫做关键活动,关键活动所连成的源点到终点路径叫做关键路径(可能有多条)。证明省略。
下面我们通过题来演示一下:

❄️ 大题2

在这里插入图片描述

💑 答案解析

在这里插入图片描述

画两个表格,照着带权有向图直接写时间即可,只要了解了这四个概念所代表的意思,及其如何来求。

💑 标准答案

在这里插入图片描述
在这里插入图片描述

😈 图的遍历(广度优先和深度优先)

我们先介绍思想,大题三会有具体的题目来演示操作:

广度优先遍历(类似于树的广度优先遍历,也就是层序遍历):它的基本思想是这样的:

  1. 先任选一个顶点开始遍历。
  2. 依次遍历这个顶点的邻接顶点。
  3. 按照刚刚遍历的顺序去遍历邻接顶点的邻接点。
  4. 如果图中还有顶点没有访问完,任选一个没有被访问的顶点,按照上面的步骤,直到所有顶点被访问完。

深度优先遍历(类似于树的先序遍历,是其在图上的推广):它的基本思想如下:

  1. 先选一个顶点开始遍历。
  2. 再从这个刚刚访问的顶点vi出发去访问它的第一个邻接点,重复本步骤,直到当前顶点没有邻接点。
  3. 返回刚刚访问过的且还有未被访问邻接点的顶点,找出并访问该顶点未被访问的邻接点,执行步骤2。
  4. 重复执行以上步骤,直到所有顶点被访问完。

😈 最短路径

最短路径有四种算法可以求,详细原理可以看博主这篇博客。

❄️ 大题3

在这里插入图片描述
在这里插入图片描述

💑 答案解析

在这里插入图片描述

💑 标准答案

在这里插入图片描述

💘 查找

😈 静态查找表:顺序查找、折半查找

顺序查找:按照顺序在表(一般是数组)中依次查找,时间复杂度是 O ( N ) O(N) O(N)。一般不用。

折半查找:即我们所说的二分查找算法。这个算法的前提是表已经有序。时间复杂度是 O ( l o g N ) O(logN) O(logN)

❄️ 大题1

在这里插入图片描述
在这里插入图片描述

💑 答案解析

在这里插入图片描述

💑 标准答案

在这里插入图片描述

.

😈 动态查找表: 二叉排序树、二叉平衡树、m阶B树

❄️ 二叉排序树

请看博主这篇博客
这个很简单考的不多,重点看二叉平衡树和m阶B树。

❄️ 二叉平衡树

二叉树平衡树上课只介绍了AVL树。

AVL树是平衡搜索二叉树的一种,它是为了解决普通二叉搜索树不平衡的问题,它通过保持每个结点的左右两棵子树的高度差不超过1来维持查找效率。

AVL树有以下性质,满足以下性质的二叉树也叫做高度平衡:

  1. 左右子树的高度差不超过1(-1,0,1)。
  2. 左右子树也为AVL
  • 我们这里的左右子树的高度均为左右子树的最长路径的结点个数。

如果一棵二叉树是高度平衡的,那么它就是平衡二叉树,它的高度是 O ( l o g N ) O(logN) O(logN),搜索的效率也在 O ( l o g N ) O(logN) O(logN)量级。

我们重点来看一下AVL树的插入调整:

  1. 左单旋
    在当前高度较高的某节点的右子树的右边插入了一个新结点引发了不平衡,需要右单旋。

  2. 右单旋
    在当前高度较高的某节点的左子树的左边插入了一个新结点引发的不平衡,需要左单旋。

  3. 左右双旋
    当前高度较高的某节点的左子树的右子树插入了一个结点,引发了不平衡,需要先左单旋,再右单旋转。

  4. 右左双旋
    当前高度较高的某节点的右子树的左子树插入了一个结点,引发了不平衡,需要先右单旋,再左单旋转。

我们用具体的题目来演示如何旋转:

❄️ 大题1

z

💑 答案解析

在这里插入图片描述

💑 标准答案

在这里插入图片描述

这个答案有点问题,最后一个数据65插入的它没写,命名的话博主是按照旋转的方向命名,这个答案是按照插入的方向命名。

😈 B树

B树是多路平衡二叉树。

  1. B树的性质

在这里插入图片描述
2. B树的插入和删除
我们用下面的题目来演示,如果你没有搞懂,请自行去B站上学习。

❄️ 大题2

在这里插入图片描述

💑 答案解析

在这里插入图片描述

😈 哈希表

❄️ 哈希表的长度、哈希表的装填因子等

哈希表的长度是指的是哈希表可以存储的最大元素数量。
哈希表的装填因子是指的是当前已经存储的元素的数量(桶的数量)/ 哈希表的长度

❄️ 常用的构造哈希函数的方法

  1. 除留余数法
    除留取余法是将关键字除以一个不大于哈希表长度的正整数p(一般是小于哈希表长度的最大质数),并将所得余数作为地址。

具体而言,除留取余法的步骤如下:

1、选择一个不大于哈希表长度的正整数p(一般是小于哈希表长度的最大质数)作为模。
2、将关键字对p取模作为哈希表的索引地址。

  1. 直接定址法
    直接定址法就是将关键字作为索引地址,关键字就是下标,要求关键字范围小且连续,否则会造成空间浪费。

❄️ 处理冲突的方法

  1. 开放寻址法

    原理是当发生冲突时,是以当前地址为基准,去通过寻址找到下一个地址。
    常用的寻址方法:

    • 线性探测:发生冲突时,从当前地址开始往后面去找空地址,如果到达表尾,就回到表头继续找,直到找到或者已经遍历全表。
    • 二次探测(平方探测):发生冲突时,从当前地址开始,左右跳跃,di = 1 2 , − 1 2 , 2 2 , − 2 2 , 3 2 , − 3 2 . . . . . . 1^2,-1^2,2^2,-2^2,3^2,-3^2...... 12,12,22,22,32,32......直到找到为止。

2.链地址法
又叫做拉链法,这个方法是把哈希表的每个位置看成一个桶,每个桶里面都是一个链表,然后如果发生冲突了,就把新的结点,尾插到这个位置桶的尾部。

我们通过下面的题目来演示:

❄️ 大题3

在这里插入图片描述

💑 答案解析

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/34649.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTML5【新特性总结】

HTML5【新特性总结】 HTML5 的新增特性主要是针对于以前的不足&#xff0c;增加了一些新的标签、新的表单和新的表单属性等。 这些新特性都有兼容性问题&#xff0c;基本是 IE9 以上版本的浏览器才支持&#xff0c;如果不考虑兼容性问题&#xff0c;可以大量使用这些新特性。…

小牛G0 60拆机

日常通勤的GOVA G0 60 的后刹车线断了&#xff0c;需要自已换刹车线&#xff0c;翻阅网上的资料后&#xff0c;可能该条刹车线需要全部拆解&#xff0c;因此开贴记录 应该不用全拆&#xff0c;但是如上图&#xff0c;后刹车线有2条绑带&#xff0c;因此更换要拆到这个位置。 1…

Hi3861 OpenHarmony嵌入式应用入门--LiteOS Event

CMSIS 2.0接口使用事件标志是实时操作系统&#xff08;RTOS&#xff09;中一种重要的同步机制。事件标志是一种轻量级的同步原语&#xff0c;用于任务间或中断服务程序&#xff08;ISR&#xff09;之间的通信。 每个事件标志对象可以包含多个标志位&#xff0c;通常最多为31个&…

CSS justify-content 不生效的原因 失效

MDN文档&#xff1a; https://developer.mozilla.org/zh-CN/docs/Web/CSS/justify-content CSS justify-content 属性定义浏览器如何沿着弹性容器的主轴和网格容器的行向轴分配内容元素之间和周围的空间。 justify-content什么情况下会不生效&#xff08;失效&#xff09;&a…

《看不影子的少年》一部探讨偏见与接纳的电视剧❗

《看不见影子的少年》这部电视剧以其独特的视角和深刻的主题 给我留下了深刻的印象。该剧讲述了一位与众不同的少年 他无法在阳光下留下影子&#xff0c;象征着他在社会中的孤独与不被理解 观看过程中&#xff0c;可以感受到少年内心的挣扎与渴望 他渴望被接纳&#xff0c;渴…

APM教程-SkyWalking安装和配置

SkyWalking简介 APM (Application Performance Management) 即应用性能管理&#xff0c;属于IT运维管理&#xff08;ITOM)范畴。主要是针对企业 关键业务的IT应用性能和用户体验的监测、优化&#xff0c;提高企业IT应用的可靠性和质量&#xff0c;保证用户得到良好的服务&#…

Java如何设置Map过期时间的的几种方法

一、技术背景 在实际的项目开发中&#xff0c;我们经常会使用到缓存中间件&#xff08;如redis、MemCache等&#xff09;来帮助我们提高系统的可用性和健壮性。 但是很多时候如果项目比较简单&#xff0c;就没有必要为了使用缓存而专门引入Redis等等中间件来加重系统的复杂性…

oracle开放某些视图给特定用户,查询报视图不存在问题

以sysdba身份登录到Oracle数据库。 创建新用户。例如&#xff0c;创建一个名为new_user的用户&#xff0c;密码为password&#xff1a; CREATE USER new_user IDENTIFIED BY password;为新用户分配表空间和临时表空间。例如&#xff0c;将表空间users和临时表空间temp分配给新…

数据库精选题(七)(综合模拟题二)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;数据库 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 一、名词解释 1、事务 2、弱实体集 3、正…

chatglm系列知识

一、目录 chatglm 是什么语言模型与transformer decoder 的区别解释prefix LM与Cause LMchatglm&#xff08;prefix LM&#xff09;与decoder-only LM 核心区别glm 架构chatglm 预训练方式chatglm 微调chatglm与chatglm2、chatglm3的区别chatglm 激活函数采用gelu, 为什么chat…

06 - matlab m_map地学绘图工具基础函数 - 绘制海岸线

06 - matlab m_map地学绘图工具基础函数 - 绘制海岸线 0. 引言1. 关于m_coast2. 关于m_gshhs3. 关于m_gshhs_c、m_gshhs_I、m_gshhs_i、m_gshhs_h、m_gshhs_f4. 关于m_shaperead5. 结语 0. 引言 本篇介绍下m_map中添加绘制海岸线的一系列函数及其用法&#xff0c;主要函数包括m…

【HTML03】HTML表单语法笔记,附带案例-作业

文章目录 表单概述一、表单容器&#xff08;form&#xff09;二、控件相关单词获取本次课程作业和案例 表单概述 允许用户输入信息&#xff0c;和提交信息的-收集用户信息。 表单&#xff1a;表单容器表单控件组成。 控件&#xff1a;输入框、单选按钮、多选、下拉框、多行文…

分布式数据库系统MyCat

MyCat简介 MyCat是一个开源的分布式数据库系统&#xff0c;是一个实现了MySQL协议的服务器&#xff0c;前端用户可以把它看作是一个数据库代理&#xff0c;用MySQL客户端工具和命令行访问&#xff0c;而其后端可以用MySQL原生协议与多个MySQL服务器通信&#xff0c;也可以用JD…

FreeRTOS实时操作系统

1.认识实施操作系统 1.1 裸机和实时操作系统 裸机&#xff1a; 早期嵌入式开发没有嵌入式操作系统的概念&#xff0c;直接操作裸机&#xff0c;在裸机上写程序&#xff0c;比如用51单片机基本就没有操作系统的概念。 通常把程序设计为前后台系统&#xff0c;主要分为两部分&a…

Redis(超详细)

Redis Redis概念&#xff1a; Redis是开源的&#xff0c;遵循BSD的&#xff0c;基于内存数据存储&#xff0c;被用于作为数据库、缓存机制、消息中间件&#xff1b; Redis的特点&#xff1a; 1.高性能key/valu内存xing数据库&#xff1b; 2.支持丰富的数据类型 3.支持持久化&am…

信息系统分析与设计:重点内容|UML在线绘制|数据库技术

目录 UML在线绘图工具信息系统分析与设计第1章 系统思想第2章 信息、管理与信息系统第3章 信息系统建设概论&#x1f31f;第4章 系统规划&#x1f31f;第5章 系统分析概述第6章 流程建模&#x1f31f;业务流程图DFD数据流图&#x1f31f;数据字典 第7章 用例建模(用例图)&#…

Docker搭建yolov8并训练、验证、推理化学仪器数据集

目录 1、安装docker 2、创建yolov8镜像 3、下载代码包 4、下载模型预训练权重 5、制作数据集 6、训练、验证及推理 &#xff08;1&#xff09;训练 &#xff08;2&#xff09;验证 &#xff08;3&#xff09;推理 中文标签显示问题 本文通过docker的方式搭建yolov8运…

OnlyOffice:现代办公的最佳选择

目录 安装 使用 评价 对比&#xff08;与WPS&#xff09; 总结 在当今的数字化办公时代&#xff0c;选择一款功能全面且易于使用的办公软件至关重要。OnlyOffice作为一款现代化的办公软件&#xff0c;凭借其强大的功能和友好的用户体验&#xff0c;逐渐成为了众多企业和个…

无线麦克风哪个品牌音质最好,一文告诉你无线领夹麦克风怎么挑选

随着直播带货和个人视频日志&#xff08;Vlog&#xff09;文化的兴起&#xff0c;以及自媒体内容创作的蓬勃发展&#xff0c;我们见证了麦克风行业的迅猛发展。在这一浪潮中&#xff0c;无线领夹麦克风以其无与伦比的便携性和操作效率&#xff0c;迅速赢得了广大视频制作者的喜…

前端HTML/CSS知识点系列

1. 什么是块级格式化上下文&#xff1f;【BFC(Block formatting context)】 BFC&#xff08;Block FormattingContext&#xff0c;块级格式化上下文&#xff09;是一个独立的渲染区域&#xff0c;其中的元素的布局不会受到外部元素的影响&#xff0c;反之亦然。BFC的创建有助于…