代码随想录-Day36

452. 用最少数量的箭引爆气球

有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points ,其中points[i] = [xstart, xend] 表示水平直径在 xstart 和 xend之间的气球。你不知道气球的确切 y 坐标。

一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。

给你一个数组 points ,返回引爆所有气球所必须射出的 最小 弓箭数 。

示例 1:

输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:气球可以用2支箭来爆破:
-在x = 6处射出箭,击破气球[2,8]和[1,6]。
-在x = 11处发射箭,击破气球[10,16]和[7,12]。
示例 2:

输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
解释:每个气球需要射出一支箭,总共需要4支箭。
示例 3:

输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2
解释:气球可以用2支箭来爆破:

  • 在x = 2处发射箭,击破气球[1,2]和[2,3]。
  • 在x = 4处射出箭,击破气球[3,4]和[4,5]。
    在这里插入图片描述
/*** 时间复杂度 : O(NlogN)  排序需要 O(NlogN) 的复杂度* 空间复杂度 : O(logN) java所使用的内置函数用的是快速排序需要 logN 的空间*/
class Solution {public int findMinArrowShots(int[][] points) {// 根据气球直径的开始坐标从小到大排序// 使用Integer内置比较方法,不会溢出Arrays.sort(points, (a, b) -> Integer.compare(a[0], b[0]));int count = 1;  // points 不为空至少需要一支箭for (int i = 1; i < points.length; i++) {if (points[i][0] > points[i - 1][1]) {  // 气球i和气球i-1不挨着,注意这里不是>=count++; // 需要一支箭} else {  // 气球i和气球i-1挨着points[i][1] = Math.min(points[i][1], points[i - 1][1]); // 更新重叠气球最小右边界}}return count;}
}

这段Java代码是解决“最少箭矢引爆气球”问题的一个实现。给定一个二维数组 points,其中 points[i] = [start_i, end_i] 表示第 i 个气球的起始和结束坐标,该函数的目标是找到射箭的最小数目,使得每个气球都被射中。气球被一支箭射中当且仅当这根箭可以从气球的起始坐标贯穿到结束坐标(即 start_i <= end_i 的情况)。请注意,箭在坐标轴上沿水平方向飞行。

代码解析:

  1. 排序:首先使用 Arrays.sort() 方法对 points 数组按照气球的起始坐标进行升序排序。这样做的目的是便于后续遍历中判断气球间的重叠关系。排序的时间复杂度是O(NlogN),其中N是气球的数量。

  2. 初始化计数器:初始化一个 count 变量为1,表示至少需要一支箭来射击气球。

  3. 遍历气球:从第二个气球开始遍历,比较当前气球(记为 i)的起始坐标与前一个气球(记为 i-1)的结束坐标。如果当前气球的起始坐标大于前一个气球的结束坐标,说明这两个气球不重叠,需要额外的一支箭,此时将 count 自增1。反之,如果气球重叠,则更新当前气球的结束坐标为两气球结束坐标中较小的一个,表示即使使用较少的箭也能覆盖这两个重叠的气球。

  4. 返回结果:遍历完成后,返回 count 作为最少需要的箭的数量。

复杂度分析:

  • 时间复杂度:O(NlogN),主要来自排序操作。
  • 空间复杂度:O(logN),这是Java内置排序函数(通常是快速排序)所需的栈空间。

总结:

该算法通过排序和一次遍历来识别可以被同一支箭射中的气球组,确保了使用最少的箭数。这是一种贪心策略,因为它在每一步都做出局部最优的选择(合并重叠的气球),从而达到全局最优解。

435. 无重叠区间

给定一个区间的集合 intervals ,其中 intervals[i] = [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠 。

示例 1:

输入: intervals = [[1,2],[2,3],[3,4],[1,3]]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:

输入: intervals = [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:

输入: intervals = [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
在这里插入图片描述

方法一:

class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals, (a,b)-> {return Integer.compare(a[0],b[0]);});int count = 1;for(int i = 1;i < intervals.length;i++){if(intervals[i][0] < intervals[i-1][1]){intervals[i][1] = Math.min(intervals[i - 1][1], intervals[i][1]);continue;}else{count++;}    }return intervals.length - count;}
}

这段Java代码是解决“移除最少区间数使剩余区间无重叠”问题的一个实现。给定一个区间的集合 intervals,其中 intervals[i] = [starti, endi],该函数的目标是移除最少数量的区间,使得剩余区间之间互不重叠。返回需要移除的区间数量。

代码解析:

  1. 排序:首先使用 Arrays.sort() 方法对 intervals 数组按照区间的起始坐标进行升序排序。这样排序的目的是便于后续遍历中判断区间是否重叠。排序依据是区间的起始点,如果起始点相同,则默认维持原顺序。

  2. 初始化计数器:初始化一个 count 变量为1,表示至少有一个区间是不会被移除的(排序后第一个区间)。

  3. 遍历区间:从第二个区间开始遍历,比较当前区间(记为 i)的起始坐标与前一个区间(记为 i-1)的结束坐标。如果当前区间的起始坐标小于前一个区间的结束坐标,说明这两个区间重叠。此时,我们选择保留结束时间较早的区间(即更新当前区间的结束时间为两个区间结束时间的较小者),并继续检查下一个区间,不增加计数器 count。这是因为通过调整保留区间的结束时间,我们实际上是在尝试通过移除当前区间来消除重叠,但并不直接增加已选择区间(无重叠)的计数。如果当前区间与前一个区间不重叠,则增加 count,表示找到了一个新的无须移除的区间。

  4. 计算并返回结果:遍历结束后,intervals.length - count 即为需要移除的区间数量,因为总区间数减去不需要移除的区间数(即无重叠的区间数)即为需要移除的区间数。

复杂度分析:

  • 时间复杂度:O(NlogN),其中N是区间数量,主要来自于排序操作。
  • 空间复杂度:O(1),除了输入和输出外,我们只用了常数级别的额外空间。

总结:

该算法通过排序和一次遍历来决定哪些区间可以保留以最小化移除数量,采用了贪心策略来逐步构建无重叠的区间集合。

方法二:

class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals, (a,b)-> {return Integer.compare(a[0],b[0]);});int remove = 0;int pre = intervals[0][1];for(int i = 1; i < intervals.length; i++) {if(pre > intervals[i][0]) {remove++;pre = Math.min(pre, intervals[i][1]);}else pre = intervals[i][1];}return remove;}
}

这段Java代码是解决“移除最少区间数使剩余区间无重叠”问题的另一种实现。给定一个区间集合 intervals,其中 intervals[i] = [starti, endi],该函数的目标是最小化需要移除的区间数量,以便剩下的区间没有重叠。返回需要移除的区间数量。

代码解析:

  1. 排序:首先使用 Arrays.sort() 方法对 intervals 数组按照区间的起始坐标进行升序排序。这样可以确保我们从最早开始的区间开始考虑,有助于减少重叠的可能性。

  2. 初始化:初始化 remove 变量为0,表示需要移除的区间数初值为0。pre 变量记录上一个区间(目前考虑的区间)的结束时间,初始化为排序后第一个区间的结束时间。

  3. 遍历区间:从第二个区间开始遍历(因为 pre 已经存储了第一个区间的结束时间),对于每个区间 i

    • 如果当前区间的起始时间 intervals[i][0] 小于前一个区间(记为 i-1)的结束时间 pre,说明这两个区间重叠。此时,需要移除一个区间以消除重叠。为了决定保留哪个区间,我们取两者结束时间的较小值更新 pre,因为这样可以留出更多空间给之后的区间,有可能减少未来的移除。同时,remove 计数器加1。
    • 如果没有重叠(即 pre <= intervals[i][0]),则更新 pre 为当前区间的结束时间,继续检查下一个区间,无需增加 remove 计数。
  4. 返回结果:遍历结束后,返回 remove,即为需要移除的区间数量,以使得剩下的区间无重叠。

复杂度分析:

  • 时间复杂度:O(NlogN),其中N是区间数量,主要来自于排序操作。
  • 空间复杂度:O(1),除了输入数组外,只使用了常数级别的额外空间。

总结:

该算法同样采取了贪心策略,通过排序和单次遍历确定最少需要移除的区间数,以确保剩余区间无重叠。与前一版本相比,这里的实现更加直接地体现了冲突发生时的选择逻辑(直接在判断中更新pre和增加remove计数),并且清晰地展示了如何通过选择重叠区间中结束更早的那个来优化解。

763.划分字母区间

给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。

注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。

返回一个表示每个字符串片段的长度的列表。

示例 1:
输入:s = “ababcbacadefegdehijhklij”
输出:[9,7,8]
解释:
划分结果为 “ababcbaca”、“defegde”、“hijhklij” 。
每个字母最多出现在一个片段中。
像 “ababcbacadefegde”, “hijhklij” 这样的划分是错误的,因为划分的片段数较少。
示例 2:

输入:s = “eccbbbbdec”
输出:[10]
在这里插入图片描述

方法一:

class Solution {public List<Integer> partitionLabels(String S) {List<Integer> list = new LinkedList<>();int[] edge = new int[26];char[] chars = S.toCharArray();for (int i = 0; i < chars.length; i++) {edge[chars[i] - 'a'] = i;}int idx = 0;int last = -1;for (int i = 0; i < chars.length; i++) {idx = Math.max(idx,edge[chars[i] - 'a']);if (i == idx) {list.add(i - last);last = i;}}return list;}
}

这段Java代码是一个解决字符串划分问题的实现,具体问题是:“给定一个字符串S,将S分割成一些子串,使每个子串都是一个回文串(正读反读都一样),且返回符合要求的最小子串数量。”然而,根据代码逻辑,实际解决的问题与上述描述不符,实际上该代码实现的功能是:

功能描述:给定一个字符串 S,将其划分为一些子串,要求同一个字母组成的子串必须划分在一起,且划分出的子串之间不能交错。例如,字符串 “ababcbacadefegdehijhklij” 应划分为 [“ababcbaca”, “defegde”, “hijhklij”]。该函数返回每个子串的长度组成的列表。

代码解析:

  1. 初始化:创建一个 List<Integer> 类型的结果列表 list 用于存放子串长度,以及一个长度为26的整型数组 edge 来记录每个字母最后一次出现的位置。初始化 idx 为0(用于记录当前子串的右边界),last 为-1(用于记录上一个子串的右边界)。

  2. 记录每个字符的最远边界:遍历字符串 S 的每个字符,利用 edge 数组记录每个字符最后出现的位置。

  3. 遍历并划分子串:再次遍历 S,这次通过比较当前字符的最远边界 edge[chars[i] - 'a'] 和当前子串右边界 idx,更新 idx 为两者的较大值。这一步确保了 idx 总是指向当前子串(根据要求划分的)的最远边界。

    • 当遍历到的索引 i 等于 idx 时,说明遇到了当前子串的结束边界,此时将当前子串长度(i - last)加入结果列表 list 中,并更新 last 为当前索引 i,准备开始寻找下一个子串。
  4. 返回结果:遍历完成后,返回结果列表 list,其中包含了每个满足条件的子串长度。

复杂度分析:

  • 时间复杂度:O(N),其中N为字符串 S 的长度。代码中包含两次遍历,但总体时间复杂度仍为线性。
  • 空间复杂度:O(1),虽然使用了 edge 数组,但其大小固定为26,与输入字符串长度无关,因此空间复杂度为常数级别。

总结:

该代码段实际实现的是根据字符的最后出现位置,将字符串划分成若干满足特定条件的连续子串,并返回这些子串的长度列表。描述中的回文串划分与实际实现功能不符。

方法二:

class Solution{/*解法二: 上述c++补充思路的Java代码实现*/public  int[][] findPartitions(String s) {List<Integer> temp = new ArrayList<>();int[][] hash = new int[26][2];//26个字母2列 表示该字母对应的区间for (int i = 0; i < s.length(); i++) {//更新字符c对应的位置ichar c = s.charAt(i);if (hash[c - 'a'][0] == 0) hash[c - 'a'][0] = i;hash[c - 'a'][1] = i;//第一个元素区别对待一下hash[s.charAt(0) - 'a'][0] = 0;}List<List<Integer>> h = new LinkedList<>();//组装区间for (int i = 0; i < 26; i++) {//if (hash[i][0] != hash[i][1]) {temp.clear();temp.add(hash[i][0]);temp.add(hash[i][1]);//System.out.println(temp);h.add(new ArrayList<>(temp));// }}// System.out.println(h);// System.out.println(h.size());int[][] res = new int[h.size()][2];for (int i = 0; i < h.size(); i++) {List<Integer> list = h.get(i);res[i][0] =  list.get(0);res[i][1] =  list.get(1);}return res;}public  List<Integer> partitionLabels(String s) {int[][] partitions = findPartitions(s);List<Integer> res = new ArrayList<>();Arrays.sort(partitions, (o1, o2) -> Integer.compare(o1[0], o2[0]));int right = partitions[0][1];int left = 0;for (int i = 0; i < partitions.length; i++) {if (partitions[i][0] > right) {//左边界大于右边界即可纪委一次分割res.add(right - left + 1);left = partitions[i][0];}right = Math.max(right, partitions[i][1]);}//最右端res.add(right - left + 1);return res;}
}

这段Java代码是为了解决一个字符串划分问题的实现,具体是这样的:给定一个字符串s,需要将字符串划分成若干个子串,使得每个子串内的字符种类完全相同。返回每个子串的长度组成的列表。以下是代码的详细解析:

findPartitions 方法

该方法负责找出字符串s中每个字符的所有出现位置,然后将这些位置以区间的形式存储起来。每个字符的区间由该字符首次出现的位置和最后一次出现的位置组成。

  1. 初始化:创建一个大小为26(对应英文字母数量)的二维数组hash,用于存储每个字符的出现区间,每一行对应一个字符,第一列存储起始位置,第二列存储结束位置。
  2. 遍历字符串:通过遍历字符串s,记录每个字符的起始和结束位置到hash数组中。
  3. 组装区间:遍历hash数组,将有效的区间(即字符至少出现过一次的区间)存入一个列表h中。
  4. 转换为数组并返回:最后,将列表h中的数据复制到二维数组res中并返回。

partitionLabels 方法

该方法基于findPartitions方法得到的区间信息,进一步计算每个满足条件的子串长度,并将这些长度组成列表返回。

  1. 调用findPartitions:首先调用findPartitions方法,获取每个字符的区间信息。
  2. 排序:对区间按起始位置进行排序。
  3. 计算子串长度:遍历排序后的区间,根据区间的起始和结束位置计算子串长度。当当前区间的起始位置大于right(记录上一个子串的结束位置)时,说明遇到了新的不重叠子串,将前一个子串的长度加入结果列表res,并更新left为当前区间的起始位置。同时,更新right为当前遍历到的区间的结束位置中的最大值,以检查是否有重叠。
  4. 添加最后一个子串长度:循环结束后,还需将最后一个子串的长度添加到结果列表中。
  5. 返回结果:返回结果列表res

注意事项

  • 代码中注释提到的“上述C++补充思路”在提供的Java代码中并未直接体现,可能是代码注释与实现细节有所出入。
  • findPartitions方法中,对第一个字符的特殊处理(设置起始位置为0)实际上是多余的,因为遍历字符串时已经正确初始化了每个字符的起始位置。
  • 整体而言,代码实现了将字符串根据相同字符分割成子串,并计算每个子串长度的功能,但存在一些冗余和可以优化的地方。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/31171.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux--视频推流及问题

方案一&#xff1a; mjpg-streamer,它运行在ARM板上 在手机上使用浏览器直接观看视频 方案二&#xff1a; 推流端&#xff08;Fmpeg&#xff09;--rtmp-->Nginx&#xff08;流媒体服务器&#xff09;--rtmp/httpflv/hls-->浏览器、播放器 此篇文章记录方案二的具体细…

Meta悄咪咪的发布多款AI新模型

大模型技术论文不断&#xff0c;每个月总会新增上千篇。本专栏精选论文重点解读&#xff0c;主题还是围绕着行业实践和工程量产。若在某个环节出现卡点&#xff0c;可以回到大模型必备腔调或者LLM背后的基础模型重新阅读。而最新科技&#xff08;Mamba,xLSTM,KAN&#xff09;则…

自定义线程池

自定义线程池需要什么 需要哪些类 MyTask /*** 自定义线程池任务* 要求每个线程有自己的编号* 线程的执行时间为0.2s*/ Data public class MyTask implements Runnable{private int id;MyTask(int id) {this.id id;}Overridepublic void run() {String name Thread.curren…

基于Java的家政服务管理平台

开头语&#xff1a;你好呀&#xff0c;我是计算机学姐码农小野&#xff01;如果有相关需求&#xff0c;可以私信联系我。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;B/S结构&#xff0c;SpringBoot框架 工具&#xff1a;MyEclipse&#xff0c;Nav…

网络编程5----初识http

1.1 请求和响应的格式 http协议和前边学过的传输层、网络层协议不同&#xff0c;它是“一问一答”形式的&#xff0c;所以要分为请求和响应两部分看待&#xff0c;同时&#xff0c;请求和响应的格式是不同的&#xff0c;我们来具体介绍一下。 1.1.1 请求 在介绍请求之前&…

Github生成Personal access tokens及在git中使用

目录 生成Token 使用Token-手工修改 使用Token-自动 生成Token 登录GitHub&#xff0c;在GitHub右上角点击个人资料头像&#xff0c;点击Settings → Developer Settings → Personal access tokens (classic)。 在界面上选择点击【Generate new token】&#xff0c;填写如…

Java 笔记:常见正则使用

文章目录 Java 笔记&#xff1a;常见正则使用正则简介常用匹配年月日的时间匹配手机号码校验 参考文章 Java 笔记&#xff1a;常见正则使用 正则简介 正则表达式定义了字符串的模式。 正则表达式可以用来搜索、编辑或处理文本。 正则表达式并不仅限于某一种语言&#xff0c;但…

手机携号转网接口查询与对接指南:技术开发者必备手册

在当今通信技术飞速发展的背景下&#xff0c;手机携号转网已成为推动电信市场竞争、保障用户权益的重要手段。而对于技术开发者而言&#xff0c;掌握手机携号转网接口的查询与对接方法&#xff0c;无疑是提升服务兼容性和用户满意度的关键。 比如如下应用场景&#xff1a; 1.…

项目八 OpenStack存储管理

任务一 理解OpenStack块存储服务 1.1 •Cinder的主要功能 • 提供 持久性块存储资源&#xff0c;供 Nova 计算服务的虚拟机实例使用 。 • 为 管理块存储设备提供一套方法&#xff0c;对卷实现从创建到删除的整个生命周期 管理。 • 将 不同的后端存储进行封装&#xff0c;对外…

Zynq学习笔记--了解中断配置方式

目录 1. 简介 2. 工程与代码解析 2.1 Vivado 工程 2.2 Vitis 裸机代码 2.3 关键代码解析 3. 总结 1. 简介 Zynq 中的中断可以分为以下几种类型&#xff1a; 软件中断&#xff08;Software Generated Interrupt, SGI&#xff09;&#xff1a;由软件触发&#xff0c;通常…

Day 46 Redis缓存集群

Redis缓存集群 redis缓存服务 缓存数据库 缓存 ​ 读取数据 cpu ​ L1 L2 L3 L4 ​ 一级缓存 二级缓存 ​ cs context switch 上下文交换 free -m ​ buffer cache mysql服务器 ​ 缓存 表缓存 数据缓存 nginx ​ expire 1d ​ 304响应码 ​ 200 ​ 301 ​ 30…

RS485中继器的作用你还不知道?

RS485是一种串行通信协议&#xff0c;支持设备间长距离通信。RS485中继器则像“传声筒”&#xff0c;能放大衰减信号&#xff0c;延长通信距离&#xff0c;隔离噪声&#xff0c;扩展分支。在实际场景中&#xff0c;如工厂内&#xff0c;通过中继器可确保控制室与远距离机器间通…

嵌入式实验---实验三 定时器实验

一、实验目的 1、掌握STM32F103定时器程序设计流程&#xff1b; 2、熟悉STM32固件库的基本使用。 二、实验原理 1、使用SysTick定时方式控制LED闪烁&#xff1b; 2、使用通用定时器产生PWM脉冲&#xff0c;通过调整占空比实现两个目标&#xff1a; &#xff08;1&#xf…

RPM命令和YUM命令

目录 一、RPM软件包 1.1、RPM概述 1.2、查询已安装的rpm软件信息 1.3、查询未安装的 RPM 软件包文件中信息 1.4、安装、升级、卸载 RPM 软件包 二、YUM常规命令 三、手动配置Apache&#xff08;http&#xff09;服务 3.1、前提条件 3.2、开始配置 3.3、开启验证服务 …

GitHub爆赞!终于有大佬把《Python学习手册》学习笔记分享出来了

这份笔记的目标是为了给出一份比较精炼&#xff0c;但是又要浅显易懂的Python教程。《Python学习手册》中文第四版虽然比较简单&#xff0c;但是措辞比较罗嗦&#xff0c;而且一个语法点往往散落在多个章节&#xff0c;不方便读者总结。 我在做笔记时&#xff0c;将一个知识点…

PFC 离散元数值模拟仿真技术与应用

近几年&#xff0c;随着计算能力的提高和算法的优化&#xff0c;离散元仿真技术得到了快速发展&#xff0c;并在学术界产生了大量研究成果。在 PFC 离散元计算中无需给定材料的宏观本构关系和对应的参数&#xff0c;这些传统的参数和力学特性在程序中可以自动得到。据调查&…

深入了解常用负载均衡软件

在构建高性能、高可用的分布式系统时&#xff0c;负载均衡技术扮演着至关重要的角色。它通过合理分发网络请求到后端服务器集群&#xff0c;从而有效提升系统吞吐量、减少响应延迟、并保障系统的稳定运行。本文将介绍几种常用的负载均衡软件&#xff0c;包括它们的优缺点、应用…

Gartner发布2024年人工智能技术成熟度曲线:29项决定人工智能领域发展方向的前沿和趋势性技术

人工智能投资已达到新高&#xff0c;重点是生成式人工智能&#xff0c;但在大多数情况下&#xff0c;该技术尚未实现预期的商业价值。这项研究通过分析各种人工智能创新&#xff08;其中许多创新正在快速发展&#xff09;&#xff0c;帮助人工智能领导者确定其他值得投资的技术…

VScode开发ARM环境搭建

1. vscode安装 直接访问官网: Visual Studio Code - Code Editing. Redefined 2. 安装插件 2.1. 安装Embedded IDE 2.2. 安装Cortex-debug 3. 工程初始化 3.1. 导入现有工程&#xff08;推荐&#xff09; 3.2. 或可创建新的工程 3.2.1. 选择Cortex-M项目 指定项目名称&…

Qemu虚拟机在线迁移到VMware

libvirt版本&#xff1a;libvirt-10.0.0qemu版本&#xff1a;qemu-8.2.0 在生产环境中&#xff0c;大多数的场景是 vmware 虚拟机迁移到 qemu 环境&#xff0c;一般是通过关机然后导出、导入磁盘镜像来实现。 如果要将 qemu 环境虚拟机迁移到 vmware 怎么办呢&#xff1f;要求…