推荐系统三十六式学习笔记:原理篇.矩阵分解12|如果关注排序效果,那么这个模型可以帮到你

目录

  • 矩阵分解的不足
  • 贝叶斯个性化排序
    • AUC
    • 构造样本
    • 目标函数
    • 训练方法
  • 总结

矩阵分解在推荐系统中的地位非常崇高。它既有协同过滤的血统,又有机器学习的基因,可以说是非常优秀了;但即便如此,传统的矩阵分解无论是在处理显式反馈,还是 处理隐式反馈都让人颇有微词,这一点是为什么呢?

矩阵分解的不足

前面讲过的两种矩阵分解,本质都是在预测用户对一个物品的偏好程度,哪怕不是预测评分,只是预测隐式反馈,也是这个事实。
得到矩阵分解结果后,常常在实际使用时,又是用这个预测结果来排序。原来的目标是让模型的预测误差最小化,到最后还是只想要一个好点的排序。

这种针对单个用户对单个物品的偏好程度进行预测,得到结果后再排序的问题,在排序学习中的叫做:point-wise,其中point意思就是:只单独考虑每个物品,每个物品 像是空间中孤立的点一样。与之相对应的,还有直接预测物品两两之间相对排序的问题,叫做pair-wise ,pair顾名思义就是成对成双。

前面将的矩阵分解都属于point-wise模型。这类模型的尴尬是:只能收集到正样本,没有负样本,于是认为缺失值就是负样本,再以预测误差为评判标准去逼近这些样本。逼近正样本没有问题,但同时逼近的负样本只是缺失值而已,并不能确认用户到底是不喜欢还是喜欢。虽然这些模型采取了一些措施来规避这个问题,比如负样本采样,但尴尬还是存在的,为了排序而绕路也是事实。

既然如此,能不能直面问题,采用pair-wise 来看待矩阵分解呢?当然可以。实际上,更直接的推荐模型应该是:能够较好地为用户排列出更好的物品相对顺序,而非更精确的评分。

这个问题已经有专业的从业者们提出了方法:贝叶斯个性化排序,简称BPR模型。下面,我们就一探究竟。

贝叶斯个性化排序

在前面的专栏文章中,已提到均方根误差,用于评价模型预测准确度的。现在要关注的是相对排序,用什么指标比较好呢?AUC,全称是Area Under Curve,意思是曲面下的面积,这里的曲线是ROC曲线。

AUC

AUC 这个值在数学上等价于:模型把关心的那一类样本排在其他样本前面的概率。最大是1,完美结果,而0.5是书籍排列,0就是完美的全部排错。

这个非常适合来评价模型的排序效果,比如说,得到一个推荐模型后,按照它计算的分数,能不能把用户真正想消费的物品排在前面。这个模型上线前是可以用日志完全计算出来的。

AUC 怎么计算呢?一般步骤如下:
1、用模型给样本计算推荐分,比如样本都是用户和物品这样一对一对的,同时还包含了有无反馈的标识;
2、得到打过分的样本,每条样本保留两个信息,第一个是分数,第二个是0或者1,1标识消费过,是正样本,0标识没有,负样本;
3、按照分数对样本重新排序,降序排列;
4、给每一个样本赋一个排序值,第一位r1=n,第二位r2=n-1,以此类推;其中要注意,如果几个样本分数一样,需要将其排序值调整为他们的平均值;
5、最终按照下面的这个公式计算就可以得到AUC值;

A U C = ∑ i ∈ ( 样 本 ) T i − M ∗ ( M + 1 ) 2 M ∗ N AUC =\frac{\sum_{i∈(样本)}{T_i-\frac{M*(M +1)}{2}}}{M*N} AUC=MNi()Ti2M(M+1)

这个公式:
第一部分:分母是我们关心的那类样本,也就是正样本,有M个,以及其他的样本有N个,这两类样本相对排序总共的可能性有M*N种;
第二部分:分子是这样计算的:第一名的排序值是r_1,它在排序上不但比过了所有的负样本,而且比过了自己以外的正样本。
正样本和正样本是同一类,所以要排查,于是就有N-M 种组合,以此类推,排序值为rm的就贡献了rm-1,把这些加起来就是分子;

关于AUC,越接近1越好是肯定的,但是并不是越接近0就越差,最差的是接近0.5,如果AUC很接近0的话,只需要把模型预测的结果加个负号就能让AUC接近1;

BPR模型,它提出了一个优化准则和学习框架,那到底BPR做了什么事情呢?主要有三点:
1.一个样本构造方法;
2.一个模型目标函数;
3.一个模型学习框架;

构造样本

前面介绍的矩阵分解,在训练时候处理的样本是:用户、物品、反馈,这样的三元组形式;

其中反馈又包含真实反馈和缺失值,缺失值充当负样本。BPR则不同,提出要关心的是物品之间对于用户的相对排序,于是构造的样本是:用户、物品1、物品2、两个物品相对排序,这样的四元组形式,其中两个物品的相对排序,取值是:

1、如果物品1是消费过的,而物品2不是,那么相对顺序取值为1,是正样本;
2、如果物品1和物品2刚好相反,则是负样本;
3、样本中不包含其他情况:物品1和物品2都是消费过的,或者都是没消费过的。

学习的顺序是反应用户偏好的相对顺序,而在使用时,面对的是所有用户还没消费过的物品,这些物品仍然可以在这样的模型下取得相对顺序,这就比三元组point-wise 样本要直观得多。

目标函数

现在,每条样本包含的是两个物品,样本预测目标是两个物品的相对排序。BPR完成矩阵分解,依然需要像交替最小二乘那样的思想。

先假设矩阵分解结果已经有了,于是计算出用户对于每个物品的推荐分数,只不过这个推荐分数可能并不满足均方根误差最小,而是满足物品相对排序最佳。

得到了用户和物品的推荐分数后,就可以计算四元组的样本中,物品1和物品2的分数差,这个分数可能是正数,也可能是负数,还可能是0;

希望的情况是:如果物品1和物品2相对排序为1,那么希望两者分数之差是个正数,而且越大越好;如果物品1和物品2的相对排序时0,则希望分数之差是负数,且越小越好;

用个符号来表示这个差: X u 12 X_{u12} Xu12,表示的是对于用户u,物品1和物品2的矩阵分解预测分数差。然后再用sigmoid函数把这个分数差压缩到0到1之间。
θ = 1 1 + e ( − X u 12 ) θ=\frac{1}{1+e^{(-X_{u12})}} θ=1+e(Xu12)1

用这种方式预测了物品1排在物品2前面的似然概率,所以最大化交叉熵就是目标函数了。目标函数通常还要防止过拟合,加上正则项,正则项其实认为模型参数有个先验概率,这也是BPR这个名字中有’贝叶斯’的来历。BPR认为模型的先验概率符合正态分布,对应到正则化就是说L2正则。

所有样本都计算:模型参数先验概率p theta ,和似然概率的乘积,最大化这个目标函数就能够得到分解后的矩阵参数其中theta就是分解后的矩阵参数。

这个目标函数化简和变形后,和把AUC当成目标函数是非常相似的,正因为如此,BPR模型宣称该模型是为AUC而生。

训练方法

有了目标函数之后,就要有训练方法。梯度下降可以,梯度下降又分为批量梯度和随机梯度两个选择,前者收敛慢,后者训练快但不稳定。
因此BPR使用了一个介于两者之间的训练方法,结合重复抽样的梯度下降。具体如下:

1、从全量样本中有放回地随机抽取一部分样本;
2、用这部分样本,采用随机梯度下降优化目标函数,更新模型参数;
3、重复步骤1,直到满足停止条件。

这样,就得到了一个更符合推荐排序要求的矩阵分解模型了;

总结

今天是矩阵分解三篇的最后一篇,传统的矩阵分解,无论是隐式反馈还是显示反馈,都是希望更加准确地预测用户对单个物品的偏好,而实际上,如果能够预测用户对物品之间的相对偏好,则更加符合实际需求的直觉。

BPR就是这样一整套针对排序的推荐算法,它事实上提出了一个优化准则和一个学习框架,至于其中优化的对象是不是矩阵分解并不是它的重点。但我在这里结合矩阵分解对其进行了讲解,同时还介绍了排序时最常用的评价指标AUC及其计算方法。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/31036.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python学习打卡:day11

day11 笔记来源于:黑马程序员python教程,8天python从入门到精通,学python看这套就够了 目录 day1183、自定义 Python 包创建包导入包方式1方式2方式3方式4 84、安装第三方包安装第三方包——pippip的网络优化 安装第三方包——PyCharm 85、…

Exposure X7软件安装包下载 丨不限速下载丨亲测好用

根据使用者情况表明Exposure的设计鼓励您进行创造性的工作,使用涂刷和遮罩工具将效果有选择地应用于图片的特定区域,非破坏性图层使您能够混合预设和调整,以获得无尽的外观。我们都知道Exposure是用于创意照片编辑的最佳图片编辑器&#xff0…

Ruby on Rails Post项目设置网站初始界面

在构建了Ruby的Web服务器后,第三步就可以去掉框架的官方页面,设置自己的网页初始页了。 Linux系统安装Ruby语言-CSDN博客 、在Ubuntu中创建Ruby on Rails项目并搭建数据库-CSDN博客、 Ruby语言建立Web服务器-CSDN博客 了解Ruby onRails项目中的主要文件…

OceanBase v4.2 特性解析:支持并发建表,提升OMS导入效率

背景 OceanBase 4.0版本新增了单日志流架构,使得OBServer单机突破了原有的分区数限制,支持更大数量的分区。 很多业务环境为了处理单机数据量过大的问题,通常采取分库分表的方法,这一方法会导致业务需要创建数十万乃至百万级别的…

贪吃蛇——c语言版

文章目录 演示效果实现的基本功能技术要点源代码实现功能GameStart打印欢迎界面和功能介绍绘制地图创建蛇创建食物 GameRun打印提示信息蛇每走一步 GameEnd蛇死亡后继续游戏 演示效果 贪吃蛇1.0演示视频 将终端应用程序改为控制台主机 实现的基本功能 贪吃蛇地图绘制蛇吃食物的…

apple watch上watchOS网络低级别和高级别区别,以及使用tcp/udp或者websocket的限制条件

可以直接看官方文档:TN3135: Low-level networking on watchOS | Apple Developer Documentation 高级网络:包括 URLSession 中的 HTTP 和 HTTPS 支持,以及在此之上的任何代码层。 低层网络:包括网络框架、 NSStream 和任何其他…

第 402 场 LeetCode 周赛题解

A 构成整天的下标对数目 I 计数&#xff1a;遍历 h o u r s hours hours &#xff0c;记录 h o u r s [ i ] % 24 hours[i]\%24 hours[i]%24 的出现次数 class Solution {public:long long countCompleteDayPairs(vector<int>& hours) {vector<int> cnt(24);…

苹果的后来者居上策略:靠隐私保护打脸微软

01.苹果与微软相比更注重用户隐私 我一直是Windows的忠实用户&#xff0c;但微软疯狂地将人工智能融入一切&#xff0c;让我开始觉得应该咬咬牙换成Mac。 自小我几乎只用Windows电脑&#xff0c;所以我对MacOS一直不太适应。虽然Windows 11有其缺点&#xff0c;但总的来说&am…

Pytorch构建vgg16模型

VGG-16 1. 导入工具包 import torch.optim as optim import torch import torch.nn as nn import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets from torch.utils.data import DataLoader import torch.optim.lr_…

阿里CEO个人投资的智驾公司,走了不一样的路

佑驾创新在去年8月和11月完成两轮融资&#xff0c;在今年5月底递表港交所&#xff0c;目前拿到了29家车企88款车型的量产订单。自动驾驶赛道不缺明星&#xff0c;这些因素本不足以凸显它的差异化。但是在招股书中&#xff0c;一条特殊的发展路线&#xff0c;却让佑驾创新显得不…

DB9母头接口定义485

在通信技术中&#xff0c;DB9接口广泛应用于串行通信&#xff0c;尤其是在RS232和RS485标准中。虽然DB9接口最常见于RS232通信&#xff0c;但通过适当的引脚映射&#xff0c;它也可以用于RS485通信。本文将详细介绍如何定义和使用DB9母头接口进行RS485连接。 DB9母头接口简介 …

②-Ⅱ单细胞学习-组间及样本细胞比例分析(补充)

数据加载 ①单细胞学习-数据读取、降维和分群_subset函数单细胞群-CSDN博客‘ #2024年6月20日 单细胞组间差异分析升级# rm(list = ls()) library(Seurat)#数据加载(在第一步已经处理好的数据) load("scedata1.RData")#这里是经过质控和降维后的单细胞数据 tabl…

蓝牙模块在智能城市构建中的创新应用

随着科技的飞速发展&#xff0c;智能城市的概念已经逐渐从理论走向实践。物联网技术作为智能城市构建的核心驱动力&#xff0c;正在推动着城市基础设施、交通管理、环境监测等领域的深刻变革。蓝牙模块&#xff0c;作为物联网技术的重要组成部分&#xff0c;以其低功耗、低成本…

java文件IO操作

前言&#xff1a; java里面的文件操作分为文件系统操作和文件内容操作。文件系统操作主要是针对File这个类来进行操作&#xff0c;而文件内容操作总的来说有四个&#xff1a;Reader&#xff0c;Writer&#xff0c;InputStream&#xff0c;OutputStream&#xff0c;前面两个是通…

CCAA质量管理【学习笔记】​​ 备考知识点笔记(七)质量相关法律法规及《管理体系审核员准则》2021修订3

5、质量管理体系基础考试大纲 3.3法律法规和其他要求 a)《中华人民共和国民法典》第三编 合同&#xff1b; b)《中华人民共和国消费者权益保护法》 c)《中华人民共和国产品质量法》 d) 中国认证认可协会相关人员注册与管理要求 目 录 前 言 第一章 总则 1.1 引言 1.2 适…

重学java 79.JDK新特性 ⑤ JDK8之后的新特性

别怕失败&#xff0c;大不了重头再来 —— 24.6.20 一、接口的私有方法 Java8版本接口增加了两类成员: 公共的默认方法 公共的静态方法 Java9版本接口又新增了一类成员: 私有的方法 为什么IDK1.9要允许接口定义私有方法呢? 因为我们说接口是规范&#xff0c;规范是…

由于找不到msvcp140.dll无法继续执行代码是什么意思,解决msvcp140.dll文件

由于找不到msvcp140.dll无法继续执行代码这种提示&#xff0c;你知道要怎么去处理么&#xff1f;出现这情况&#xff0c;你的程序就代表出现问题了&#xff0c;你会发现打不开&#xff0c;我们需要修复msvcp140.dll文件才能正常的使用程序。今天我们就来聊聊msvcp140.dll找不到…

加密好的WPSword文档,忘记密码怎么办?

在日常办公和学习中&#xff0c;我们经常使用WPS Word等文档处理软件来创建和编辑重要文件。为了保护这些文件不被未经授权的人访问&#xff0c;我们通常会选择给文档设置密码。然而&#xff0c;有时我们可能会因为时间久远或其他原因而忘记自己设置的密码&#xff0c;这时该如…

【Go】用 DBeaver、db browser 和 SqlCipher 读取 SqlCipher 数据库

本文档主要描述如何用 DBeaver、db browser 和 SqlCipher 上打开加密的 SQLite3 数据库(用 SqlCipher v3 加密) 软件版本 DBeaver&#xff1a;v24.1.0 SQLite-driver: sqlite-jdbc-3.46.0.0.jar dbbrowser-for-sqlite-cipher&#xff1a;3.12.2 SqlCipher cli(ubuntun)&am…

如何避免在React中的回调函数中使用箭头函数可能引起的内存泄漏?

在React中&#xff0c;箭头函数在回调函数中的使用确实可能引发性能问题&#xff0c;尤其是当这些函数在渲染方法或者组件内部被定义时。每次组件重新渲染时&#xff0c;都会创建这些函数的新实例&#xff0c;这可能导致不必要的计算和内存使用&#xff0c;甚至在某些情况下引发…