李宏毅2023机器学习作业HW06解析和代码分享

ML2023Spring - HW6 相关信息:
课程主页
课程视频
Sample code
HW06 视频
HW06 PDF

个人完整代码分享: GitHub | Gitee | GitCode

P.S. HW06 是在 Judgeboi 上提交的,出于学习目的这里会自定义两个度量的函数,不用深究,遵循 Suggestion 就可以达成学习的目的。

每年的数据集 size 和 feature 并不完全相同,但基本一致,过去的代码仍可用于新一年的 Homework。。

文章目录

  • 任务目标(seq2seq)
  • 性能指标(FID)
    • 安装环境
    • 定义函数计算 FID 和 AFD rate
  • 数据解析
    • 数据下载(kaggle)
  • Gradescope
    • Question 1
      • 简述去噪过程
    • Question 2
      • 训练/推理过程的差异
      • 生成图像的差异
      • 为什么 DDIM 更快
  • Baselines
    • Simple baseline (FID ≤ 30000, AFD ≥ 0)
    • Medium baseline (FID ≤ 12000, AFD ≥ 0.4)
    • Strong baseline (FID ≤ 10000, AFD ≥ 0.5)
    • Boss baseline(FID ≤ 9000, AFD ≥ 0.6)
  • 完整的样例图对比

任务目标(seq2seq)

  • Anime face generation: 动漫人脸生成
    • 输入:随机数
    • 输出:动漫人脸
    • 实现途径:扩散模型
    • 目标:生成 1000 张动漫人脸图像

性能指标(FID)

  • FID (Frechet Inception Distance)
    用于衡量真实图像与生成图像之间特征向量的距离,计算步骤:
    FID 计算

    1. 使用 Inception V3 模型分别提取真实图像生成图像的特征(使用最后一层卷积层的输出)
    2. 计算特征的均值和方差
    3. 计算 Frechet 距离
  • AFD (Anime face detection) rate

    用于衡量动漫人脸检测性能,用来检测提交的文件中有多少动漫人脸。

不过存在一个问题:代码中没有给出 FID 和 AFD 的计算,所以我们需要去自定义计算的函数用于学习。

安装环境

AFD rate 的计算使用预训练的 Haar Cascade 文件。anime_face_detector 库在 cuda 版本过新的时候,需要处理的步骤过多,不方便复现

安装 pytorch-fidultralytics,并下载预训练的 YOLOv8 模型(源自 Github)。

!pip install pytorch-fid ultralytics
!wget https://github.com/MagicalKyaru/yolov8_animeface/releases/download/v1/yolov8x6_animeface.pt

定义函数计算 FID 和 AFD rate

这里我们定义在 Inference 之后。

import os
import cv2
from pytorch_fid import fid_scoredef calculate_fid(real_images_path, generated_images_path):"""Calculate FID score between real and generated images.:param real_images_path: Path to the directory containing real images.:param generated_images_path: Path to the directory containing generated images.:return: FID score"""fid = fid_score.calculate_fid_given_paths([real_images_path, generated_images_path], batch_size=50, device='cuda', dims=2048)return fiddef calculate_afd(generated_images_path, save=True):"""Calculate AFD (Anime Face Detection) score for generated images.:param generated_images_path: Path to the directory containing generated images.:return: AFD score (percentage of images detected as anime faces)"""results = yolov8_animeface.predict(generated_images_path, save=save, conf=0.8, iou=0.8, imgsz=64)anime_faces_detected = 0total_images = len(results)for result in results:if len(result.boxes) > 0:anime_faces_detected += 1afd_score = anime_faces_detected / total_imagesreturn afd_score# Calculate and print FID and AFD with optional visualization
yolov8_animeface = YOLO('yolov8x6_animeface.pt')
real_images_path = './faces/faces'  # Replace with the path to real images
fid = calculate_fid(real_images_path, './submission')
afd = calculate_afd('./submission')
print(f'FID: {fid}')
print(f'AFD: {afd}')

注意,使用当前函数只是为了有个度量,单以当前的YOLOv8预训练模型为例,很可能当前模型只学会了判断两个眼睛的区域是 face,但没学会判断三个眼睛图像的不是 face,这会导致 AFD 实际上偏高,所以只能作学习用途。

数据解析

  • 训练数据:71,314 动漫人脸图片

    数据集下载链接:https://www.kaggle.com/datasets/b07202024/diffusion/download?datasetVersionNumber=1,也可以通过命令行进行下载:kaggle datasets download -d b07202024/diffusion

    注意下载完之后需要进行解压,并对应修改 Sample codeTraining Hyper-parameters 中的路径 path

数据下载(kaggle)

To use the Kaggle API, sign up for a Kaggle account at https://www.kaggle.com. Then go to the ‘Account’ tab of your user profile (https://www.kaggle.com/<username>/account) and select ‘Create API Token’. This will trigger the download of kaggle.json, a file containing your API credentials. Place this file in the location ~/.kaggle/kaggle.json (on Windows in the location C:\Users\<Windows-username>\.kaggle\kaggle.json - you can check the exact location, sans drive, with echo %HOMEPATH%). You can define a shell environment variable KAGGLE_CONFIG_DIR to change this location to $KAGGLE_CONFIG_DIR/kaggle.json (on Windows it will be %KAGGLE_CONFIG_DIR%\kaggle.json).

-- Official Kaggle API

替换<username>为你自己的用户名,https://www.kaggle.com/<username>/account,然后点击 Create New API Token,将下载下来的文件放去应该放的位置:

  • Mac 和 Linux 放在 ~/.kaggle
  • Windows 放在 C:\Users\<Windows-username>\.kaggle
pip install kaggle
# 你需要先在 Kaggle -> Account -> Create New API Token 中下载 kaggle.json
# mv kaggle.json ~/.kaggle/kaggle.json
kaggle datasets download -d b07202024/diffusion
unzip diffusion

Gradescope

这一题我们先处理可视化部分,这个有助于我们理解自己的模型(毕竟没有官方的标准来评价生成的图像好坏)。

Question 1

采样5张图像并展示其渐进生成过程,简要描述不同时间步的差异。

修改 GaussianDiffusion 类中的 p_sample_loop() 方法:

class GaussianDiffusion(nn.Module):...# Gradescope – Question 1@torch.no_grad()def p_sample_loop(self, shape, return_all_timesteps = False, num_samples=5, save_path='./Q1_progressive_generation.png'):batch, device = shape[0], self.betas.deviceimg = torch.randn(shape, device = device)imgs = [img]samples = [img[:num_samples]]  # Store initial noisy samplesx_start = None############################################# TODO: plot the sampling process #############################################for t in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):img, x_start = self.p_sample(img, t)imgs.append(img)if t % (self.num_timesteps // 20) == 0:samples.append(img[:num_samples])  # Store samples at specific stepsret = img if not return_all_timesteps else torch.stack(imgs, dim = 1)ret = self.unnormalize(ret)self.plot_progressive_generation(samples, len(samples)-1, save_path=save_path)return retdef plot_progressive_generation(self, samples, num_steps, save_path=None):fig, axes = plt.subplots(1, num_steps + 1, figsize=(20, 4))for i, sample in enumerate(samples):axes[i].imshow(vutils.make_grid(sample, nrow=1, normalize=True).permute(1, 2, 0).cpu().numpy())axes[i].axis('off')axes[i].set_title(f'Step {i}')if save_path:plt.savefig(save_path)plt.show()

表现如下(基于 Sample code):
在这里插入图片描述

简述去噪过程

去噪过程主要是指从完全噪声的图像开始,通过逐步减少噪声,最终生成一个清晰的图像。去噪过程的简单描述:

  1. 初始步骤(噪声):
    在初始步骤中,图像是纯噪声,此时的图像没有任何结构和可辨识的特征,看起来为随机的像素点。

  2. 中间步骤:
    模型通过多个时间步(Timesteps)将噪声逐渐减少,每一步都试图恢复更多的图像信息。

    • 早期阶段,图像中开始出现一些模糊的结构和形状。虽然仍然有很多噪声,但可以看到一些基本轮廓和大致的图像结构。

    • 中期阶段,图像中的细节开始变得更加清晰。面部特征如眼睛、鼻子和嘴巴开始显现,噪声显著减少,图像的主要轮廓和特征逐渐清晰。

  3. 最终步骤(完全去噪):
    在最后的步骤中,噪声被最大程度地去除,图像变清晰。

Question 2

DDPM(去噪扩散概率模型)在推理过程中速度较慢,而DDIM(去噪扩散隐式模型)在推理过程中至少比DDPM快10倍,并且保留了质量。请分别描述这两种模型的训练、推理过程和生成图像的差异,并简要解释为什么DDIM更快。

参考文献:

  • 去噪扩散概率模型 (DDPM)
  • 去噪扩散隐式模型 (DDIM)

下面是个简单的叙述,如果有需要的话,建议阅读原文进行理解。

训练/推理过程的差异

DDPM

  • DDPM 的训练分为前向扩散和反向去噪两个部分:
    前向扩散逐步给图像添加噪声。
    反向去噪使用 U-Net 模型,通过最小化预测噪声和实际噪声的差异来训练,逐步去掉这些噪声。

    • Ho et al., 2020, To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ with group normalization throughout.
  • 但需要处理大量的时间步(比如1000步),训练时间相对DDIM来说更长。

    • Ho et al., 2020, We set T = 1000 for all experiments …

DDIM

  • DDIM 的训练与 DDPM 类似,但使用非马尔可夫的确定性采样过程。
    • Song et al., 2020, We present denoising diffusion implicit models (DDIMs)…a non-Markovian deterministic sampling process

生成图像的差异

DDPM

  • 生成的图像质量很高,每一步去噪都会使图像变得更加清晰,但步骤多,整个过程比DDIM慢。

DDIM

  • 步骤少,生成速度快,且生成的图像质量与 DDPM 相当。
    • Song et al., 2020, Notably, DDIM is able to produce samples with quality comparable to 1000 step models within 20 to 100 steps …

为什么 DDIM 更快

  1. 步骤更少:DDIM 在推理过程中减少了很多步骤。例如,DDPM 可能需要 1000 步,而 DDIM 可能只需要 50-100 步。
    • Song et al., 2020, Notably, DDIM is able to produce samples with quality comparable to 1000 step models within 20 to 100 steps, which is a 10× to 50× speed up compared to the original DDPM. Even though DDPM could also achieve reasonable sample quality with 100× steps, DDIM requires much fewer steps to achieve this; on CelebA, the FID score of the 100 step DDPM is similar to that of the 20 step DDIM.
  2. 非马尔可夫采样
    • Song et al., 2020, These non-Markovian processes can correspond to generative processes that are deterministic, giving rise to implicit models that produce high quality samples much faster.
  3. 效率:确定性的采样方式使得 DDIM 能更快地生成高质量的图像。
    • Song et al., 2020, For DDIM, the generative process is deterministic, and x 0 x_0 x0 would depend only on the initial state x T x_T xT .

Baselines

实际上如果时间充足,出于学习的目的,可以对超参数或者模型架构进行调整以印证自身的想法。这篇文章是最近重新拾起的,所以只是一个简单的概述帮助理解。

另外,当前 FID 数的度量数量级和 Baseline 是不一致的,这里因为时间原因不做度量标准的还原,完成 Suggestion 和 Gradescope 就足够达成学习的目的了。

Simple baseline (FID ≤ 30000, AFD ≥ 0)

  • 运行所给的 sample code

Medium baseline (FID ≤ 12000, AFD ≥ 0.4)

  • 简单的数据增强
    T.RandomHorizontalFlip(), T.RandomRotation(10), T.ColorJitter(brightness=0.25, contrast=0.25)

  • 将 timesteps 变成1000(遵循 DDPM 原论文的设置)

    • 注意,设置为 1000 的话在 trainer.inference() 时很可能会遇到 CUDA out of memory,这里对 inference() 进行简单的修改。
      实际效果是针对 self.ema.ema_model.sample() 减少 batch_size 至 100,不用过多细究。

      def inference(self, num=1000, n_iter=10, output_path='./submission'):if not os.path.exists(output_path):os.mkdir(output_path)with torch.no_grad():for i in range(n_iter):batches = num_to_groups(num // n_iter, 100)all_images = list(map(lambda n: self.ema.ema_model.sample(batch_size=n), batches))[0]for j in range(all_images.size(0)):torchvision.utils.save_image(all_images[j], f'{output_path}/{i * 100 + j + 1}.jpg')
      
  • 将 train_num_step 修改为 20000

Strong baseline (FID ≤ 10000, AFD ≥ 0.5)

  • Model Arch
    看了下HW06 对应的视频,从叙述上看应该指的是调整超参数:channeldim_mults
    这里简单的将 channel 调整为 32。
    dim_mults 初始为 (1, 2, 4),增加维度改成 (1, 2, 4, 8) 又或者改变其中的值都是允许的。
  • Varience Scheduler
    这部分可以自己实现,下面给出比较官方的代码供大家参考比对:使用 denoising-diffusion-pytorch 中的 cosine_beta_schedule(),对应的还有 sigmoid_beta_schedule()
    sigmoid_beta_schedule() 在训练时更适合用在分辨率大于 64x64 的图像上,当前训练集图像的分辨率为 96x96。
    增加和修改的部分代码:
def cosine_beta_schedule(timesteps, s = 0.008):"""cosine scheduleas proposed in https://openreview.net/forum?id=-NEXDKk8gZ"""steps = timesteps + 1t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timestepsalphas_cumprod = torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** 2alphas_cumprod = alphas_cumprod / alphas_cumprod[0]betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])return torch.clip(betas, 0, 0.999)def sigmoid_beta_schedule(timesteps, start = -3, end = 3, tau = 1, clamp_min = 1e-5):"""sigmoid scheduleproposed in https://arxiv.org/abs/2212.11972 - Figure 8better for images > 64x64, when used during training"""steps = timesteps + 1t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timestepsv_start = torch.tensor(start / tau).sigmoid()v_end = torch.tensor(end / tau).sigmoid()alphas_cumprod = (-((t * (end - start) + start) / tau).sigmoid() + v_end) / (v_end - v_start)alphas_cumprod = alphas_cumprod / alphas_cumprod[0]betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])return torch.clip(betas, 0, 0.999)class GaussianDiffusion(nn.Module):def __init__(...beta_schedule = 'linear',...):...if beta_schedule == 'linear':beta_schedule_fn = linear_beta_scheduleelif beta_schedule == 'cosine':beta_schedule_fn = cosine_beta_scheduleelif beta_schedule == 'sigmoid':beta_schedule_fn = sigmoid_beta_scheduleelse:raise ValueError(f'unknown beta schedule {beta_schedule}')......
beta_schedule = 'cosine' # 'sigmoid'
...

Boss baseline(FID ≤ 9000, AFD ≥ 0.6)

  • StyleGAN
    仅供参考,从实验结果上来看,扩散模型生成的图像视觉上更清晰,而 StyleGAN 的风格更一致。
    当然,同样存在设置出现问题的情况(毕竟超参数直接延续了之前的设定。Anyway,希望对你有所帮助)
Strong (DDPM)Boss (StyleGAN)
strongboss
class StyleGANTrainer(object):def __init__(self, folder, image_size, *,train_batch_size=16, gradient_accumulate_every=1, train_lr=1e-3, train_num_steps=100000, ema_update_every=10, ema_decay=0.995, save_and_sample_every=1000, num_samples=25, results_folder='./results', split_batches=True):super().__init__()dataloader_config = DataLoaderConfiguration(split_batches=split_batches)self.accelerator = Accelerator(dataloader_config=dataloader_config,mixed_precision='no')self.image_size = image_size# Initialize the generator and discriminatorself.gen = self.create_generator().cuda()self.dis = self.create_discriminator().cuda()self.g_optim = torch.optim.Adam(self.gen.parameters(), lr=train_lr, betas=(0.0, 0.99))self.d_optim = torch.optim.Adam(self.dis.parameters(), lr=train_lr, betas=(0.0, 0.99))self.train_num_steps = train_num_stepsself.batch_size = train_batch_sizeself.gradient_accumulate_every = gradient_accumulate_every# Initialize the dataset and dataloaderself.ds = Dataset(folder, image_size)self.dl = cycle(DataLoader(self.ds, batch_size=train_batch_size, shuffle=True, pin_memory=True, num_workers=os.cpu_count()))# Initialize the EMA for the generatorself.ema = EMA(self.gen, beta=ema_decay, update_every=ema_update_every).to(self.device)self.results_folder = Path(results_folder)self.results_folder.mkdir(exist_ok=True)self.save_and_sample_every = save_and_sample_everyself.num_samples = num_samplesself.step = 0def create_generator(self):return dnnlib.util.construct_class_by_name(class_name='training.networks.Generator',z_dim=512,c_dim=0,w_dim=512,img_resolution=self.image_size,img_channels=3)def create_discriminator(self):return dnnlib.util.construct_class_by_name(class_name='training.networks.Discriminator',c_dim=0,img_resolution=self.image_size,img_channels=3)@propertydef device(self):return self.accelerator.devicedef save(self, milestone):if not self.accelerator.is_local_main_process:returndata = {'step': self.step,'gen': self.accelerator.get_state_dict(self.gen),'dis': self.accelerator.get_state_dict(self.dis),'g_optim': self.g_optim.state_dict(),'d_optim': self.d_optim.state_dict(),'ema': self.ema.state_dict()}torch.save(data, str(self.results_folder / f'model-{milestone}.pt'))def load(self, ckpt):data = torch.load(ckpt, map_location=self.device)self.gen.load_state_dict(data['gen'])self.dis.load_state_dict(data['dis'])self.g_optim.load_state_dict(data['g_optim'])self.d_optim.load_state_dict(data['d_optim'])self.ema.load_state_dict(data['ema'])self.step = data['step']def train(self):with tqdm(initial=self.step, total=self.train_num_steps, disable=not self.accelerator.is_main_process) as pbar:while self.step < self.train_num_steps:total_g_loss = 0.total_d_loss = 0.for _ in range(self.gradient_accumulate_every):# Get a batch of real imagesreal_images = next(self.dl).to(self.device)# Generate latent vectorslatent = torch.randn([self.batch_size, self.gen.z_dim]).cuda()# Generate fake imagesfake_images = self.gen(latent, None)# Discriminator logits for real and fake imagesreal_logits = self.dis(real_images, None)fake_logits = self.dis(fake_images.detach(), None)# Discriminator lossd_loss = torch.nn.functional.softplus(fake_logits).mean() + torch.nn.functional.softplus(-real_logits).mean()# Update discriminatorself.d_optim.zero_grad()self.accelerator.backward(d_loss / self.gradient_accumulate_every)self.d_optim.step()total_d_loss += d_loss.item()# Generator logits for fake imagesfake_logits = self.dis(fake_images, None)# Generator lossg_loss = torch.nn.functional.softplus(-fake_logits).mean()# Update generatorself.g_optim.zero_grad()self.accelerator.backward(g_loss / self.gradient_accumulate_every)self.g_optim.step()total_g_loss += g_loss.item()self.ema.update()pbar.set_description(f'G loss: {total_g_loss:.4f} D loss: {total_d_loss:.4f}')self.step += 1if self.step % self.save_and_sample_every == 0:self.ema.ema_model.eval()with torch.no_grad():milestone = self.step // self.save_and_sample_everybatches = num_to_groups(self.num_samples, self.batch_size)all_images_list = list(map(lambda n: self.ema.ema_model(torch.randn([n, self.gen.z_dim]).cuda(), None), batches))all_images = torch.cat(all_images_list, dim=0)utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow=int(np.sqrt(self.num_samples)))self.save(milestone)pbar.update(1)print('Training complete')def inference(self, num=1000, n_iter=5, output_path='./submission'):if not os.path.exists(output_path):os.mkdir(output_path)with torch.no_grad():for i in range(n_iter):latent = torch.randn(num // n_iter, self.gen.z_dim).cuda()images = self.ema.ema_model(latent, None)for j, img in enumerate(images):utils.save_image(img, f'{output_path}/{i * (num // n_iter) + j + 1}.jpg')

完整的样例图对比

SimpleMediumStrongBoss
simplemediumstrongboss

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/30418.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【计算机毕业设计】211校园约拍微信小程序

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

网工内推 | 中国电信、香港宽频系统工程师,CCIE认证优先,最高年薪25w

01 中国电信股份有限公司浙江分公司 &#x1f537;招聘岗位&#xff1a;系统架构师 &#x1f537;岗位职责&#xff1a; 1、做好客户网络和信息安全产品的解决方案支撑、交付及后续运营维护&#xff0c;做好相关产数项目的支撑。 2、根据信息安全管理要求&#xff0c;负责客户…

调取Windows系统虚拟键盘

目录 一 设计原型 二 后台源码 一 设计原型 二 后台源码 using System.Diagnostics;namespace 调取Windows虚拟键盘 {public partial class Form1 : Form{public Form1(){InitializeComponent();}private void richTextBox1_DoubleClick(object sender, EventArgs e){Proces…

Cloudflare API 令牌完整指南:快速掌握查询与创建(手把手教你查询和创建 Cloudflare API 令牌)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 Cloudflare API 令牌 📒📝 查询 Cloudflare API 令牌📝 创建编辑区域 DNS 令牌⚓️ 相关链接 ⚓️📖 介绍 📖 在管理网站和应用程序时,Cloudflare 提供了强大的 API 接口,可以极大地简化各种操作。本文将详细介绍如…

Debian12安装Nvidia官方驱动

1、下载驱动&#xff08;下载到一个英文目录例如你的用户目录/home/用户名下&#xff0c;我下载到dowload目录&#xff0c;由于默认显示中文&#xff0c;在命令行不支持中文显示的是一串数字&#xff0c;当然你仍然可以cd 那串数字进目录&#xff0c;显示有有引号就加引号&…

【宠粉赠书】科技图表绘制:R语言数据可视化

为了回馈粉丝们的厚爱&#xff0c;今天小智给大家送上一套科研绘图的必备书籍——《R语言数据可视化&#xff1a;科技图表绘制》。下面我会详细给大家介绍这套图书&#xff0c;文末留有领取方式。 图书介绍 《R语言数据可视化&#xff1a;科技图表绘制》结合编者多年的数据分析…

PLC模拟量和数字量到底有什么区别?

PLC模拟量和数字量的区别 在工业自动化领域&#xff0c;可编程逻辑控制器&#xff08;PLC&#xff09;是控制各种机械设备和生产过程的核心组件。PLC通过处理模拟量和数字量来实现对工业过程的精确控制。了解模拟量和数字量的区别对于设计高效、可靠的自动化系统至关重要。 1. …

C++之STL(二三)

1、vector源码刨析 1.1、数据结构以及动态扩充算法 其实vector内部有三个指针&#xff0c;分别是数据的第一个元素Myfirst、数据的最后一个元素的下一个位置Mylast&#xff0c;最后一个空间的下一个位置Myend&#xff1b;当你插入数据的时候&#xff0c;先判断当前容量够不够&…

尚品汇项目2

p68 加入产品个数操作 p69 加入购物车

立讯精密:“果链一哥”怎么摆脱依赖症

AI手机创新赋能&#xff0c;隔岸苹果股价走出历史新高&#xff0c;消费电子有望迎来复苏&#xff1f; 这里我们聊聊苹果产业链代工龙头——立讯精密 作为早早入场的代工企业&#xff0c;立讯精密曾经吃足“果链”红利&#xff0c;如今摆在它面前的是增长、毛利、安全等难题。 …

人工智能—美国加利福尼亚州房价预测实战

引言 在当今快速发展的房地产市场中&#xff0c;房价预测已成为一个至关重要的领域。它不仅关系到投资者的决策&#xff0c;也直接影响到普通购房者的生活质量。特别是在美国加利福尼亚州&#xff0c;这个以其高房价和房地产市场的波动性而闻名的地方&#xff0c;准确的房价预…

TF-IDF、BM25传统算法总结

1. TF-IDF算法 F-IDF&#xff08;词频-逆文档频率&#xff09;是一种用于衡量文本中词语重要性的方法&#xff0c;特别适用于信息检索和文本挖掘任务。下面会拆分为两部分深入讲解TF-IDF的计算过程&#xff0c;以便更好地理解。 TF-IDF的计算过程可以分为两个主要部分&#xf…

【漏洞复现】契约锁电子签章平台 add 远程命令执行漏洞(XVE-2023-23720)

0x01 产品简介 契约锁电子签章平台是上海亘岩网络科技有限公司推出的一套数字签章解决方案。契约锁为中大型组织提供“数字身份、电子签章、印章管控以及数据存证服务”于一体的数字可信基础解决方案,可无缝集成各类系统,让其具有电子化签署的能力,实现组织全程数字化办公。通…

03 - matlab m_map地学绘图工具基础函数 - 设置坐标系(m_coord)

03 - matlab m_map地学绘图工具基础函数 - 设置坐标系&#xff08;m_coord&#xff09; 0. 引言1. m_proj使用方法2. 结语 0. 引言 上一篇介绍了m_proj函数用于初始化投影&#xff0c;本篇介绍的函数m_coord用于初始化地理坐标系或地磁坐标系&#xff0c;地理/地磁坐标系和投影…

xss一些笔记

&#xff08;乱写的一些笔记&#xff09; innerHTML只防script像是img就不会防 innerText都防 上面代码执行避免用户交互 js也可以用’‘执行 例子 alert’1‘ document.location.hash // #号后的部分&#xff0c;包括#号 document.location.host // 域名…

黑马苍穹外卖4 店铺营业状态设置+Redis基础

店铺营业状态设置 Redis MySQL Java并发 JavaMVC 计算机网络 操作系统 算法&#xff0c;后端面试主要是这些&#xff0c;外加项目 Redis 数据库&#xff0c;基于内存存储的key-value结构。 mysql是磁盘存储&#xff0c;通过二维表存储。 在文件夹目录打开cmd 服务端&#xf…

YOLOv10(6):YOLOv10基于TensorRT的部署(基于INetworkDefinition)

1. 写在前面 我们在前面已经讲过很多关于YOLOv10的一些知识点&#xff0c;也简单理了一下如何训练自己的数据。 现在本篇文章主要是讲解一下如何在TensorRT中部署YOLOv10&#xff0c;相信经过这一步&#xff0c;各位小伙伴已经能够无限的接近于将YOLOv10产品化了。 另一个需要说…

LeetCode-day17-2713. 矩阵中严格递增的单元格数

LeetCode-day17-2713. 矩阵中严格递增的单元格数 题目描述示例示例1&#xff1a;示例2&#xff1a;示例3&#xff1a; 思路代码 题目描述 给你一个下标从 1 开始、大小为 m x n 的整数矩阵 mat&#xff0c;你可以选择任一单元格作为 起始单元格 。 从起始单元格出发&#xff…

Perplexity AI — 探索网络,发掘知识,沟通思想

体验地址&#xff1a;Perplexity AI &#xff08;国外网站访问需要梯子&#xff09; Perplexity AI是一款功能强大的人工智能搜索引擎&#xff0c;其特点和优势主要体现在以下几个方面&#xff1a; 功能&#xff1a; 自然语言搜索&#xff1a;Perplexity AI可以理解用户的自然…

Shopify 如何实现 Sticky 功能

Shopify 如何实现 Sticky 功能 介绍 在网页设计中&#xff0c;Sticky 功能是一种常见的技术&#xff0c;它使得网页上的元素在滚动时保持固定位置。这对于创建吸引人的用户体验和提高网站的可用性非常重要。Shopify 作为一个流行的电商平台&#xff0c;提供了丰富的功能和工具…