AI数据分析:集中度分析和离散度分析

在deepseek中输入提示词:

你是一个Python编程专家,要完成一个Python脚本编写的任务,具体步骤如下:

读取Excel表格:"F:\AI自媒体内容\AI行业数据分析\toolify月榜\toolify2023年-2024年月排行榜汇总数据.xlsx"

计算第2列第1行-20行数据组的:

最大值

最小值

均值

中位数

极差

方差

标准差

20%分位数

25%分位数

75%分位数

80%分位数

将计算结果写入第2列第21行-31行;

然后按照上面的计算步骤一直计算到第15列第21行-31行;

计算第2列第1行(设为数据起点)到第15列第1行(设为数据终点)数据组的简单年均增长率,写入第16列第1行,然后计算第2行,第3行数据,一直计算到第20行;

计算第2列第1行(设为数据起点)到第15列第1行(设为数据终点)数据组的复合年均增长率,然后计算第2行,第3行数据,一直计算到第20行;

注意:每一步都输出信息到屏幕

一步步的思考,但是代码要整合在一起

计算复合年均增长率的时候,年数n是固定值:13

源代码:

import pandas as pd

import numpy as np

# 读取Excel文件

file_path = "F:\\AI自媒体内容\\AI行业数据分析\\toolify月榜\\toolify2023年-2024年月排行榜汇总数据.xlsx"

df = pd.read_excel(file_path)

# 计算第2列到第15列的统计量并写入新的单元格

for i in range(1, 15):

data = df.iloc[0:20, i] # 第i列的数据

stats = {

'最大值': np.max(data),

'最小值': np.min(data),

'均值': np.mean(data),

'中位数': np.median(data),

'极差': np.ptp(data),

'方差': np.var(data),

'标准差': np.std(data),

'20%分位数': np.percentile(data, 20),

'25%分位数': np.percentile(data, 25),

'75%分位数': np.percentile(data, 75),

'80%分位数': np.percentile(data, 80)

}

# 将计算结果写入新的单元格

for j, (stat_name, stat_value) in enumerate(stats.items(), start=20):

df.iloc[j, i] = stat_value

print(f"第{i+1}列的{stat_name}已经写入第{j+1}行。")

# 计算简单年均增长率并写入第16列

for i in range(1, 21):

start_value = df.iloc[i-1, 1] # 起点数据

end_value = df.iloc[i-1, 14] # 终点数据

growth_rate = ((end_value - start_value) / start_value) * 100

df.iloc[i-1, 15] = growth_rate

print(f"第{i}行的简单年均增长率已经写入第16列。")

# 计算复合年均增长率(假设年数为13年)并写入第17列

n = 13 # 固定年数

for i in range(1, 21):

start_value = df.iloc[i-1, 1] # 起点数据

end_value = df.iloc[i-1, 14] # 终点数据

compound_growth_rate = ((end_value / start_value) ** (1/n) - 1) * 100

df.iloc[i-1, 16] = compound_growth_rate

print(f"第{i}行的复合年均增长率(假设年数为13年)已经写入第17列。")

# 将更新后的DataFrame写入Excel文件

with pd.ExcelWriter(file_path, engine='openpyxl', mode='a', if_sheet_exists='overlay') as writer:

df.to_excel(writer, sheet_name='Sheet1', startrow=1, startcol=0, index=False)

print("所有计算结果已经写入Excel文件。")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/28692.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

树莓派4B刷入KODI作为机顶盒

LibreELEC Raspberry - LibreELEC Download - OSMC 使用LibreELEC USB-SD Creator进行系统烧写, LibreELEC USB-SD Creator下载地址 因为Kodi语言包是以插件的形式存在,不是集成到安装包里,有时候网络原因不能连接到Kodi的服务器&#xff…

爬虫初学篇

初次学习爬虫,知识笔记小想 目录🌟 一、🍉基础知识二、🍉http协议:三、🍉解析网页(1) xpath的用法:(2) bs4解析器的解释:(3) python字符编码的错误:(4) 正则表达式&#…

GEO ISP图像调试-PFC(蓝紫边校正)

目录 1、简单介绍 2、调试策略 3、输出结果 1、简单介绍 GEO中中调整图像蓝紫边可分为两步,第一步:调整蓝紫边检测区域,第二步:设置去蓝紫边强度。 2、调试策略 图1 该图像蓝紫边较严重 主要原因是由于蓝紫边检测不准导致的&…

【面试题】MySQL常见面试题总结

备战实习,会定期给大家整理常考的面试题,大家一起加油! 🎯 系列文章目录 【面试题】面试题分享之JVM篇【面试题】面试题分享之Java并发篇【面试题】面试题分享之Java集合篇(三) 注意:文章若有错…

LeetCode435无重叠区间

题目描述 给定一个区间的集合 intervals ,其中 intervals[i] [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠 。 解析 由于要删除尽可能少的区间 ,因此区间跨度大的一定是要先删除的,这样就有两种贪心思想了…

FreeRtos-13资源管理

一、临界资源是什么 要独占式地访问临界资源,有3种方法: 1.公平竞争:比如使用互斥量,谁先获得互斥量谁就访问临界资源,这部分内容前面讲过。 谁要跟我抢,我就灭掉谁: 2.中断要跟我抢?我屏蔽中断 3.其他任务要跟我抢?我禁止调度器,不运行任务切换 二、暂停调度器…

接口postman

前后端 前端:是肉眼所能见到的界面 后端:处理数据,数据逻辑 接口:提供前后端交互的通道 接口测试:校验接口返回的响应数据是否与预期的一致 接口测试可以绕过前端,直接对服务器进行测试 请求方式 pos…

互联网宗教信息服务许可证怎么办理?

一、什么是互联网宗教信息 互联网宗教信息是指通过网站、应用程序、论坛、博客、微博、公众账号、即时通讯工具、网络直播等形式,以图文或音视频等方式传播有关宗教教义教规、宗教知识、宗教文化、宗教活动等涉及宗教的信息。 根据《互联网宗教信息服务管理办法》…

[BSidesCF 2020]Had a bad day1

看到页面有两个按钮 先随便点一个试一下,当我们点击之后发现url是有变动的 感觉url是有点东西的,可能是某种注入,先尝试一下sql注入,发现给出了报错 通过报错我们可以确定是文件包含漏洞,那我们试试php伪协议去读取一下…

JDBC操作数据库的方法

目录 一、JDBC介绍 二、使用方法(以MySQL为例) (1)MySQL的jar包,导入到IDEA (2)使用代码,操作数据库 1)设置数据源 1.创建MysqlDataSource对象,使用set…

国产MCU芯片(2):东软MCU概览

前言: 国产芯片替代的一个主战场之一就是mcu,可以说很多国内芯片设计公司都打算或者已经在设计甚至有了一款或多款的量产产品了,这也是国际大背景决定的。过去的家电市场、过去的汽车电子市场,的确国产芯片的身影不是很常见,如今不同了,很多fabless投身这个行业,一种是…

【数据结构】排序(下)

个人主页~ 排序(上) 栈和队列 排序 二、常见排序的实现8、快速排序的优化9、非递归快速排序(1)基本思想(2)代码实现(3)时间复杂度(4)空间复杂度 10、归并排序…

一个基于大模型的多功能的本地网页语音合成工具

ChatTTS-ui 是一个开源项目,这是一个利用 ChatTTS 技术将文本转换为语音的本地网页界面工具。它不仅支持中英文和数字的混合输入,还提供了丰富的API接口,为开发者和用户提供了极大的便利。 项目地址:https://github.com/jianchang…

1.华为路由器-三层交换机-二层交换机组网连接

AR1配置GE 0/0/0接口IP [Huawei]int g0/0/0 [Huawei-GigabitEthernet0/0/0] [Huawei-GigabitEthernet0/0/0]ip add 1.1.1.1 24 [Huawei]iP route-static 192.168.0.0 16 1.1.1.2三层交换机配置如下 创建vlan [Huawei]vlan batch 10 20配置接口ip [Huawei]int g0/0/1 [Huawei…

数电逻辑门电路分析和Digital仿真

文章目录 1. 逻辑门电路 2. 非门(NOT Gate) 3. 与门(AND Gate) 4. 或门(OR Gate) 5. 与非门(NAND Gate) 6. 或非门(NOR Gate) 7. 异或门(XO…

开源模型应用落地-LangChain高阶-LCEL-表达式语言(七)

一、前言 尽管现在的大语言模型已经非常强大,可以解决许多问题,但在处理复杂情况时,仍然需要进行多个步骤或整合不同的流程才能达到最终的目标。然而,现在可以利用langchain来使得模型的应用变得更加直接和简单。 LCEL是什么&…

每天五分钟深度学习框架pytorch:多维tensor向量在某一维度的拼接和分割

本文重点 在深度学习中,我们常常需要完成多个向量拼接,同时也要完成向量的分割,在pytorch中已经有封装好的库,我们可以直接调用完成这部分任务。 Cat拼接 c=torch.cat([a,b],dim=0)表示将a和b按0维度进行拼接,需要注意再非dim维度,两个矩阵的维度必须是一致的,不然会拼…

单调栈(续)、由斐波那契数列讲述矩阵快速降幂技巧

在这里先接上一篇文章单调栈,这里还有单调栈的一道题 题目一(单调栈续) 给定一个数组arr, 返回所有子数组最小值的累加和 就是一个数组,有很多的子数组,每个数组肯定有一个最小值,要把所有子…

Caffe、PyTorch、Scikit-learn、Spark MLlib 和 TensorFlowOnSpark 概述

在 AI 框架方面,有几种工具可用于图像分类、视觉和语音等任务。有些很受欢迎,如 PyTorch 和 Caffe,而另一些则更受限制。以下是四种流行的 AI 工具的亮点。 Caffee Caffee是贾扬青在加州大学伯克利分校(UC Berkeley)时开发的深度学习框架。该工具可用于图像分类、语音和…

胡说八道(24.6.12)——数字电子技术以及Modelsim

上回书说到数电中的最常用的表达式——逻辑表达式(由布尔代数组成)以及常用的两种图表——真值表(真值表表示的是所有的输入可能的线性组合以及输出)和卡诺图(卡诺图则是一种化简工具,排除冗余项,合并可合并项)。 今天,先来看看昨天说的基本逻…