sklearn 基础教程

scikit-learn(简称sklearn)是一个开源的机器学习库,它提供了简单和有效的数据分析和数据挖掘工具。sklearn是Python语言中最重要的机器学习库之一,广泛用于统计学习和数据分析。
以下是scikit-learn的基础教程,帮助您开始使用这个强大的工具。

安装

在开始之前,您需要确保已经安装了Python和pip。然后,您可以使用pip来安装scikit-learn

pip install -U scikit-learn

数据集

scikit-learn提供了一系列的数据集,供您在学习和测试时使用。例如,著名的鸢尾花数据集(Iris dataset):

from sklearn.datasets import load_iris
iris = load_iris()
data = iris.data
target = iris.target

数据预处理

在训练模型之前,通常需要对数据进行预处理。sklearn.preprocessing模块提供了许多数据预处理工具。
例如,使用StandardScaler对数据进行标准化:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)

模型训练

scikit-learn提供了大量的机器学习模型,包括分类、回归、聚类等。以下是一个使用支持向量机(SVM)进行分类的例子:

from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data_scaled, target, test_size=0.2, random_state=42)
# 创建SVM分类器
clf = SVC(kernel='linear')
# 训练模型
clf.fit(X_train, y_train)
# 评估模型
score = clf.score(X_test, y_test)
print("模型的准确率:", score)

模型评估

sklearn.metrics模块提供了多种性能评估指标,如准确率、混淆矩阵、F1分数等。

from sklearn.metrics import classification_report
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))

管道(Pipeline)

scikit-learn提供了Pipeline类,用于将多个步骤封装为一个单一的估计器,这在机器学习工作流中非常有用。

from sklearn.pipeline import Pipeline
pipeline = Pipeline([('scaler', StandardScaler()),('svm', SVC(kernel='linear'))
])
pipeline.fit(X_train, y_train)
score = pipeline.score(X_test, y_test)
print("管道中模型的准确率:", score)

超参数调整

使用GridSearchCVRandomizedSearchCV进行超参数的网格搜索或随机搜索,以找到最佳的模型参数。

from sklearn.model_selection import GridSearchCV
param_grid = {'svm__C': [0.1, 1, 10], 'svm__gamma': [1, 0.1, 0.01]}
grid = GridSearchCV(pipeline, param_grid, cv=5)
grid.fit(X_train, y_train)
print("最佳参数:", grid.best_params_)
print("最佳分数:", grid.best_score_)

这只是一个非常基础的介绍,scikit-learn是一个非常庞大和强大的库,提供了许多高级功能。要深入学习,建议查看官方文档和教程,以及参与社区讨论。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/28451.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

存储器的性能指标以及层次化存储器

存储器的性能指标 存储器有三个性能指标:速度、容量和位价(每位价格) 1.存储速度 (1)存取时间 想衡量存储速度,最直观的指标就是完成一次存储器读写操作所需要的时间,这叫做存取时间&#x…

Spring运维之boo项目表现层测试加载测试的专用配置属性以及在JUnit中启动web服务器发送虚拟请求

测试表现层的代码如何测试 加载测试的专用属性 首先写一个测试 假定我们进行测试的时候要加一些属性 要去修改一些属性 我们可以写一个只在本测试有效的测试 写在配置里 测试 打印输出 我们把配置文件里面的配置注释掉后 我们同样可以启动 package com.example.demo;impo…

Qt状态机框架

概述 状态机框架提供了用于创建和执行状态图的类。这些概念和符号基于Harel的Statecharts:复杂系统的可视化形式(http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf),也是UML状态图的基础。状态机执行的语义基于状态图XML (SCXML)(http://…

Web的UI自动化基础知识

目录 1 Web自动化入门基础1.1 自动化知识以及工具1.2 主流web自动化测试工具1.3 入门案例 2 使用工具的API2.1 元素定位2.1.1 id选择器2.1.2 name2.1.3 class_name选择器2.1.4 tag_name选择器2.1.5 link_text选择器2.1.6 partial_link_text选择器2.1.7 xpath选择器2.1.8 CSS选择…

mediamtx流媒体服务器测试

MediaMTX简介 在web页面中直接播放rtsp视频流,重点推荐:mediamtx,不仅仅是rtsp-CSDN博客 mediamtx github MediaMTX(以前的rtsp-simple-server)是一个现成的和零依赖的实时媒体服务器和媒体代理,允许发布,读取&…

可视化大屏开发系列——页面布局

页面布局是可视化大屏的基础,想要拥有一个基本美观的大屏,就得考虑页面整体模块的宽高自适应,我们自然就会想到具有强大灵活性flex布局,再借助百分比布局来辅助。至此,大屏页面布局问题即可得到解决。 写在前面&#x…

哪些数据管理知识领域需要做到数据全生命周期管理

一、数据生命周期 数据管理、数据治理、数据安全、元数据管理、数据治理等知识领域,都需要按照数据的生命周期开展管理工作。数据生命周期包括计划、设计/启用、创建/获取、存储/维护、使用、增强和处置。详见下图。 1.数据治理生命周期 1)规划:将数据要求与业务战略连接起…

PTA 6 - 20 汉诺塔问题(py 递归)

这道题是一道比较典型的递归问题,他跟斐波那契数列的本质是一样的,大家自己动手推理一下,非常好推 参考代码: def hanoi(n,a,b,c):global stepif n 1:print(a,"->",c)step 1else:hanoi(n-1,a,c,b)print(a,"…

查看npm版本异常,更新nvm版本解决问题

首先说说遇见的问题,基本上把nvm,npm的坑都排了一遍 nvm版本导致npm install报错 Unexpected token ‘.‘install和查看node版本都正确,结果查看npm版本时候报错 首先就是降低node版本… 可以说基本没用,如果要降低版本的话&…

用python纯手写一个日历

一、代码 # 月份名称数组 months ["January", "February", "March", "April", "May", "June","July", "August", "September", "October", "November", &qu…

深度解析RocketMq源码-持久化组件(二) MappedFileQueue

1.绪论 MappedFileQueue是commitLog中最核心的主组件。前面讲解commitLog的时候也曾说过,MappedFileQueue本质上就是一个MappedFile队列,而commitLog操纵Mmapped读写的时候,也是通过MappedFileQueue来实现的。 commitlog和mappedfilequeue和…

git下载路径

第一步 1进入官网:Git - Downloading Package 第二步 根据自己的系统选择对应版本下载

局域网内怎么访问另一台电脑?(2种方法)

案例:需要在局域网内远程电脑 “当我使用笔记本电脑时,有时需要获取保存在台式机上的文件,而两者都连接在同一个局域网上。我的台式机使用的是Windows 10企业版,而笔记本电脑则是Windows 10专业版。我想知道是否可以通过网络远程…

OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用

操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:Visual Studio Code编程语言:C11 1.功能描述 ShapeContextDistanceExtractor是OpenCV库中的一个类,主要用于计算形状之间的相似度或距离。它是基于形状上下文(Shape Co…

26.1 WEB框架介绍

1. Web应用程序 1.1 应用程序有两种模式 应用程序的架构模式主要分为两种: C/S (客户端/服务器端)和B/S(浏览器/服务器端). * 1. C/S模式, 即客户端/服务器模式(Client/Server Model): 是一种分布式计算模式.它将应用程序的功能划分为客户端和服务器端两部分.在这种模式下, 客…

码住!详解时序数据库不同分类与性能对比

加速发展中的时序数据库,基于不同架构,最流行的类别是? 作为管理工业场景时序数据的新兴数据库品类,时序数据库凭借着对海量时序数据的高效存储、高可扩展性、时序分析计算等特性,一跃成为物联网时代工业领域颇受欢迎的…

C++升级软件时删除老版本软件的桌面快捷方式(附源码)

删除桌面快捷方式其实是删除桌面上的快捷方式文件,那我们如何去删除桌面快捷方式文件呢?软件可能已经发布过多个版本,其中的一些版本的快捷方式文件名称可能做了多次改动,程序中不可能记录每个版本的快捷方式名称,没法直接去删除快捷方式文件。本文就给出一种有效的处理办…

【GO-OpenCV】go-cv快速配置

最近对golang实现目标检测心血来潮,尝试在没有sudo权限的平台配置go-cv,有所发现,索性多个平台都做尝试 安装Go语言(Golang) 通过包管理器安装(适用于Debian/Ubuntu)(有点慢) 更新包列表: sud…

Linux命令2

文章目录 移动文件或目录mv格式 查找命令/文件存放位目录置which格式 查找文件或目录find格式查找类型多个查找条件逻辑运算符 移动文件或目录 mv 将文件或者目录移动到指定的位置 如果目标的位置和源位置相同,相当于改名操作 跨目录移动相当于window的剪切 格式…

C++ 算法教程

归并排序 #include<iostream> using namespace std; template <class T> void Merge(T data[],int start,int mid,int end) {int len1 mid - start 1, len2 end - mid;int i, j, k;T* left new int[len1];T* right new int[len2];for (i 0; i < len1; i)…