【Pandas驯化-04】Pandas中drop_duplicates、describe、翻转操作

【Pandas驯化-04】Pandas中drop_duplicates、describe、翻转操作
 
本次修炼方法请往下查看
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地!
🎇 相关内容文档获取 微信公众号
🎇 相关内容视频讲解 B站

🎓 博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位 个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验

🔧 技术专长: 在机器学习、搜索、广告、推荐、CV、NLP、多模态、数据分析等算法相关领域有丰富的项目实战经验。已累计为求职、科研、学习等需求提供近千次有偿|无偿定制化服务,助力多位小伙伴在学习、求职、工作上少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于机器学习、深度学习、数据分析、NLP、PyTorch、Python、Linux、工作、项目总结相关的实用内容。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

🌵文章目录🌵

  • 🎯 1. 基本介绍
  • 💡 2. 使用方法
    • 2.1 去重drop_duplicates
    • 2.2 描述信息describe
    • 2.3 行列的翻转
  • 🔍 3. 高阶用法
    • 3.1 describe高阶用法
  • 🔍 4. 注意事项
  • 🔧 5. 总结

下滑查看解决方法

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🎯 1. 基本介绍

  在处理数据集时,我们经常需要执行一些基本操作,如去除重复项、获取数据的描述性统计信息,以及对数据进行翻转操作。本文将介绍 Pandas 中的 drop_duplicates、describe 函数以及翻转操作的使用方法。

💡 2. 使用方法

2.1 去重drop_duplicates

  drop_duplicates 函数用于删除 DataFrame 中的重复行。默认情况下,它会检查所有列,找出重复的行,并只保留第一次出现的行。

import pandas as pd# 创建一个包含重复行的 DataFrame
data = {'Name': ['Alice', 'Bob', 'Alice', 'David'],'Age': [24, 27, 24, 32]}
df = pd.DataFrame(data)# 去除重复项,默认保留第一个出现的重复项
df_unique = df.drop_duplicates()
print(df_unique)# 删除数据中的重复项数据 df.drop_duplicated() # 有subset, keep等参数可以选择,# 对哪些列重复数据 进行操作,保留最重复项中的哪一个 # 输出所以数据中重复的数据 df[df.duplicated()], #原理和上述输出空值差不多,都是将重复的数据转为True和False来提取为True的数据

2.2 描述信息describe

  describe 函数提供了一个快速的方法来获取 DataFrame 中数值列的描述性统计信息,包括计数、平均值、标准差、最小值、四分位数和最大值。

import pandas as pd# 使用 describe 获取描述性统计信息
desc_stats = df.describe()
print(desc_stats)

2.3 行列的翻转

  Pandas 中的翻转操作包括轴向翻转(transpose)和行或列的反转。transpose 方法用于交换 DataFrame 的行和列,而行或列的反转可以使用 iloc 或布尔索引实现,具体的用法如下所示:

# 使用 transpose 翻转 DataFrame 的行和列
df_transposed = df.transpose()
print(df_transposed)# 使用 iloc 反转 DataFrame 的行
df_reversed_rows = df.iloc[::-1]
print(df_reversed_rows)# 使用 iloc 反转 DataFrame 的列
df_reversed_columns = df.iloc[:, ::-1]
print(df_reversed_columns)

🔍 3. 高阶用法

3.1 describe高阶用法

   默认情况下,describe()函数只会包括数值类型的列,而会忽略对象类型的列。如果想要包括对象类型的列,可以通过设置参数include='all’来实现。下面是一个示例代码,演示如何使用describe()函数包括对象类型的列:

import pandas as pd# 创建示例数据
data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35],'City': ['Beijing', 'Shanghai', 'Guangzhou']}
df = pd.DataFrame(data)# 默认describe()
print(df.describe())# 包括对象类型的列
print(df.describe(include='all'))Age
count   3.000000
mean   30.000000
std     5.000000
min    25.000000
25%    27.500000
50%    30.000000
75%    32.500000
max    35.000000Name        Age      City
count     3   3.000000         3
unique    3        NaN         3
top     Bob        NaN  Shanghai
freq      1        NaN         1
mean    NaN  30.000000       NaN
std     NaN   5.000000       NaN
min   Alice  25.000000       NaN
25%     NaN  27.500000       NaN
50%     NaN  30.000000       NaN
75%     NaN  32.500000       NaN
max  Charlie  35.000000       NaN

  

🔍 4. 注意事项

  对上述的各个函数在使用的过程中需要注意的一些事项,不然可能会出现error,具体主要为:

  • 使用 drop_duplicates 时,可以指定 subset 参数来只对某些列进行去重。
  • describe 默认不包括对象类型的列,如果需要包括,可以设置 include=‘all’。
  • 在执行翻转操作时,要确保索引的使用是正确的,以避免出现错误或不符合预期的结果。

🔧 5. 总结

  本文介绍了 Pandas 中的 drop_duplicates、describe 函数以及翻转操作的使用方法。这些功能在日常的数据分析工作中非常有用,可以帮助我们快速去除数据中的重复项,获取数据的描述性统计信息,以及对数据进行必要的翻转操作。通过实际的代码示例,我们可以看到这些操作是如何简单而有效地应用于实际的数据集上的。希望这篇博客能够帮助你更好地利用 Pandas 进行数据分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/28311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CleanMyMac X软件下载附加详细安装教程

​首先要介绍的是CleanMyMac X,这是一款极受欢迎的苹果电脑清理软件,它能够全面扫描你的电脑系统,清理无用的文件和垃圾,以释放硬盘空间,除了清理功能之外,CleanMyMac X 还可协助管理应用程序、优化性能、修…

[2024-06]-[大模型]-[Ollama]- WebUI

主要涉及要部署的前端webui是来源于:https://github.com/open-webui/open-webui 正常就使用: docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-web…

建造者模式(大话设计模式)C/C++版本

建造者模式 C 参考&#xff1a;https://www.cnblogs.com/Galesaur-wcy/p/15907863.html #include <iostream> #include <vector> #include <algorithm> #include <string> using namespace std;// Product Class&#xff0c;产品类&#xff0c;由多个…

小白跟做江科大32单片机之定时器输出比较

原理部分 背景 GPIO口是数字输出端口&#xff0c;只能输出1和0。但是通过PWM&#xff0c;可以使其控制LED呼吸灯亮灭的程度 1.通过CNT和CCR进行比较&#xff0c;可以输出一定频率和占空比的PWM波形 2.通用定时器有4个CCR&#xff0c;可同时输出4路PWM波形&#xff0c;但只有…

智慧消防新篇章:可视化数据分析平台引领未来

一、什么是智慧消防可视化数据分析平台&#xff1f; 智慧消防可视化数据分析平台&#xff0c;运用大数据、云计算、物联网等先进技术&#xff0c;将消防信息以直观、易懂的图形化方式展示出来。它不仅能够实时监控消防设备的运行状态&#xff0c;还能对火灾风险进行预测和评估…

Unity | Tilemap系统

目录 一、准备工作 1.插件导入 2.资源导入 二、相关组件介绍 1.Grid组件 2.Tilemap组件 3.Tile 4.Tile Palette 5.Brushes 三、动态创建地图 四、其他功能 1.移动网格上物体 2.拖拽缩放地图 Unity Tilemap系统为2D游戏开发提供了一个直观且功能强大的平台&#xff…

C++ 55 之 多继承

#include <iostream> #include <string> using namespace std;class Base08_1{ public:int m_a;Base08_1(){this->m_a 10;} };class Base08_2{ public:// int m_b;int m_a;Base08_2(){// this->m_b 20;this->m_a 30;} };// 多继承 继承的类型都要…

GenICam标准(一)

系列文章目录 GenICam标准&#xff08;一&#xff09; GenICam标准&#xff08;二&#xff09; GenICam标准&#xff08;三&#xff09; GenICam标准&#xff08;四&#xff09; GenICam标准&#xff08;五&#xff09; GenICam标准&#xff08;六&#xff09; 文章目录 系列文…

非对称加密系统解析

目录 1. 概述 2. 非对称加密标准 2.1 RSA 2.2 SM2 2.2.1 SM2私钥 2.2.2 SM2公钥 2.2.3 加密数据格式 2.2.4 签名数据格式 1. 概述 非对称加密中&#xff0c;密钥分为加密密钥和解密密钥两种。发送者用加密密钥对消息进行加密&#xff0c;接收者用解密密钥对密文进行解密…

element--el-table添加合计后固定列x轴滚动条无法滚动问题

效果图 改变固定列滚轮高度问题 解决文章 解决方案 使用到的参数 pointer-events 属性用来控制一个元素能否响应鼠标操作&#xff0c;常用的关键字有 auto 和 none pointer-events: none; 让一个元素忽略鼠标操作 pointer-events: auto; 还原浏览器设定的默认行为 代码演示 添…

Python文本处理:初探《三国演义》

Python文本处理&#xff1a;初探《三国演义》 三国演义获取文本文本预处理分词与词频统计引入停用词后进行词频统计分析人物出场次数结果可视化完整代码 三国演义 《三国演义》是中国古代四大名著之一&#xff0c;它以东汉末年到晋朝统一之间的历史为背景&#xff0c;讲述了魏…

Mongodb使用$pop删除数组中的元素

学习mongodb&#xff0c;体会mongodb的每一个使用细节&#xff0c;欢迎阅读威赞的文章。这是威赞发布的第67篇mongodb技术文章&#xff0c;欢迎浏览本专栏威赞发布的其他文章。如果您认为我的文章对您有帮助或者解决您的问题&#xff0c;欢迎在文章下面点个赞&#xff0c;或者关…

使用PyTorch实现LSTM生成ai诗

最近学习torch的一个小demo。 什么是LSTM&#xff1f; 长短时记忆网络&#xff08;Long Short-Term Memory&#xff0c;LSTM&#xff09;是一种循环神经网络&#xff08;RNN&#xff09;的变体&#xff0c;旨在解决传统RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM引入了…

vue格网图

先看效果 再看代码 <n-gridv-elsex-gap"20":y-gap"20"cols"2 s:2 m:3 l:3 xl:3 2xl:4"responsive"screen" ><n-grid-itemv-for"(item,index) in newSongList":key"item.id"class"cursor-pointer …

Spring学习笔记(九)简单的SSM框架整合

实验目的 掌握SSM框架整合。 实验环境 硬件&#xff1a;PC机 操作系统&#xff1a;Windows 开发工具&#xff1a;idea 实验内容 整合SSM框架。 实验步骤 搭建SSM环境&#xff1a;构建web项目&#xff0c;导入需要的jar包&#xff0c;通过单元测试测试各层框架搭建的正确…

IDEA 设置主题、背景图片、背景颜色

一、设置主题 1、点击菜单 File -> Settings : 点击 Settings 菜单 2、点击 Editor -> Color Scheme -> Scheme, 小哈的 IDEA 版本号为 2022.2.3 , 官方默认提供了 4 种主题&#xff1a; Classic Light &#xff08;经典白&#xff09; ;Darcula &#xff08;暗黑主…

知识普及:什么是边缘计算(Edge Computing)?

边缘计算是一种分布式计算架构&#xff0c;它将数据处理、存储和服务功能移近数据产生的边缘位置&#xff0c;即接近数据源和用户的位置&#xff0c;而不是依赖中心化的数据中心或云计算平台。边缘计算的核心思想是在靠近终端设备的位置进行数据处理&#xff0c;以降低延迟、减…

前端:鼠标点击实现高亮特效

一、实现思路 获取鼠标点击位置 通过鼠标点击位置设置高亮裁剪动画 二、效果展示 三、按钮组件代码 <template><buttonclass"blueBut"click"clickHandler":style"{backgroundColor: clickBut ? rgb(31, 67, 117) : rgb(128, 128, 128),…

16. 第十六章 类和函数

16. 类和函数 现在我们已经知道如何创建新的类型, 下一步是编写接收用户定义的对象作为参数或者将其当作结果用户定义的函数. 本章我会展示函数式编程风格, 以及两个新的程序开发计划.本章的代码示例可以从↓下载. https://github.com/AllenDowney/ThinkPython2/blob/master/c…

java程序在运行过程各个内部结构的作用

一&#xff1a;内部结构 一个进程对应一个jvm实例&#xff0c;一个运行时数据区&#xff0c;又包含多个线程&#xff0c;这些线程共享了方法区和堆&#xff0c;每个线程包含了程序计数器、本地方法栈和虚拟机栈接下来我们通过一个示意图介绍一下这个空间。 如图所示,当一个hell…