知识普及:什么是边缘计算(Edge Computing)?

      

  边缘计算是一种分布式计算架构,它将数据处理、存储和服务功能移近数据产生的边缘位置,即接近数据源和用户的位置,而不是依赖中心化的数据中心或云计算平台。边缘计算的核心思想是在靠近终端设备的位置进行数据处理,以降低延迟、减少带宽需求、提升数据隐私和增强实时性。     

一、边缘计算的定义与特点

(一)定义

        边缘计算是一种通过将计算和数据处理能力部署在网络的边缘(即靠近数据源或终端设备的位置)的分布式计算模式。其目的是减少数据在传输过程中的延迟和带宽消耗,优化响应速度,并提升系统的可扩展性和稳定性。

(二)主要特点

        1.分布式计算:将计算能力分布在多个边缘节点上,而不是集中在一个或几个中心数据中心。

        2.本地处理:数据在本地或邻近设备上进行处理,而不是发送到远程云端进行处理,从而减少数据传输延迟。

        3.实时性:能够提供更快的响应时间,适合需要低延迟的应用,如自动驾驶、工业控制、物联网(IoT)等。

        4.带宽优化:通过在本地处理数据,可以减少传输到中央服务器的数据量,降低网络带宽的消耗。

        5.数据隐私和安全:数据处理靠近数据源,可以减少敏感数据的传输,增强数据隐私和安全性。

        6.自治性:边缘设备可以独立处理任务,提升系统的鲁棒性和独立性,即使与云端连接中断也能继续工作。

二、边缘计算的工作原理

边缘计算的实现通常包括以下几个步骤:

  1. 数据收集:边缘设备或传感器(如智能手机、IoT 设备、工业设备等)收集原始数据。
  2. 数据处理:数据在靠近数据源的边缘节点(如网关、边缘服务器或本地计算设备)进行预处理、分析和决策。
  3. 数据传输:经过处理后的数据可以根据需求传输到中央云端进行进一步分析、存储或处理。
  4. 响应和执行:根据处理结果,边缘设备可以直接执行相应的操作,减少了决策和执行之间的延迟。

三、边缘计算的优势

  1. 低延迟:数据在靠近产生地的位置进行处理,减少了数据传输的时间延迟,适合需要快速响应的应用场景。
  2. 带宽节省:本地处理数据可以减少需要传输的数据量,降低网络带宽的占用,适合带宽有限或成本高的场景。
  3. 数据隐私和安全:通过减少数据在网络中的传输,可以降低数据被拦截、窃取或篡改的风险,提升数据隐私和安全性。
  4. 可靠性:即使与中央云端的连接断开,边缘节点也可以继续独立工作,提升系统的整体可靠性。
  5. 本地智能:支持在本地设备上部署 AI 模型和机器学习算法,提供本地化的智能处理能力。

四、边缘计算的应用场景

1.工业自动化

  • 实时控制:边缘计算用于机器和生产线的实时控制和监控,减少延迟,提高效率。
  • 设备维护:通过边缘节点监控设备状态,实现预测性维护,减少停机时间。

2.智能交通

  • 自动驾驶:车辆配备边缘计算设备,实时处理传感器数据,做出驾驶决策。
  • 交通管理:路侧边缘设备收集和处理交通数据,优化交通信号控制和交通流管理

3.智能家居

  • 家庭自动化:智能家居设备在本地处理传感器数据,提供个性化服务,如智能温控、安防系统等。
  • 设备互联:边缘设备管理家庭内的多个智能设备,实现设备间的数据共享和协同工作。

4.远程医疗

  • 健康监测:可穿戴设备在本地处理健康数据,实现实时监测和预警,减少数据传输到云端的需求。
  • 手术辅助:边缘计算支持机器人手术系统,提供低延迟的操作反馈。

5.物联网(IoT)

  • 边缘网关:IoT 网关设备处理和过滤传感器数据,在本地执行控制任务,并将部分数据上传至云端。
  • 智能城市:边缘设备管理城市基础设施,如路灯、垃圾箱、监控摄像头等,实现智能化管理。

6.增强现实(AR)和虚拟现实(VR)

  • 本地渲染:边缘计算支持 AR/VR 设备在本地进行图像渲染和处理,减少延迟,提高用户体验。
  • 环境感知:AR/VR 设备在本地处理传感器数据,提供实时环境感知能力。

五、边缘计算面临的挑战

  1. 安全管理:边缘设备分布广泛,安全管理和更新复杂,需要有效的安全策略和防护措施。
  2. 设备管理:边缘节点数量庞大,管理和监控这些设备的状态和运行情况是一大挑战。
  3. 数据一致性:在边缘和云之间同步数据可能面临数据一致性和协调的问题。
  4. 资源受限:边缘设备通常计算资源有限,需要高效的资源管理和优化算法。

六、边缘计算与云计算的关系

边缘计算云计算(Cloud Computing)并不是对立的,而是互补的。边缘计算通过在本地处理数据,减少延迟和带宽需求,适合需要实时处理的应用。云计算则提供了强大的数据存储、处理能力和分析功能,适合需要集中计算和大规模数据处理的任务。通常的架构是将边缘计算与云计算结合使用,形成一种混合计算模式:

  • 边缘:处理实时性强、数据量大的任务,提供本地化决策支持。
  • :处理需要强大计算能力、长时间存储和深度分析的任务,提供全局视图和分析。

七、总结

        边缘计算作为一种新兴的计算模式,通过在靠近数据源的位置进行数据处理,能够大幅降低延迟、优化带宽使用、增强数据隐私和提高系统的实时响应能力。在物联网、智能家居、工业自动化等众多领域,边缘计算正逐渐成为关键技术。随着网络技术的发展和计算资源的提升,边缘计算将进一步扩展其应用范围,为各类智能化应用提供强有力的支持。

        期待您的后续关注!还请诸君多多点赞!

        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/28273.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端:鼠标点击实现高亮特效

一、实现思路 获取鼠标点击位置 通过鼠标点击位置设置高亮裁剪动画 二、效果展示 三、按钮组件代码 <template><buttonclass"blueBut"click"clickHandler":style"{backgroundColor: clickBut ? rgb(31, 67, 117) : rgb(128, 128, 128),…

16. 第十六章 类和函数

16. 类和函数 现在我们已经知道如何创建新的类型, 下一步是编写接收用户定义的对象作为参数或者将其当作结果用户定义的函数. 本章我会展示函数式编程风格, 以及两个新的程序开发计划.本章的代码示例可以从↓下载. https://github.com/AllenDowney/ThinkPython2/blob/master/c…

java程序在运行过程各个内部结构的作用

一&#xff1a;内部结构 一个进程对应一个jvm实例&#xff0c;一个运行时数据区&#xff0c;又包含多个线程&#xff0c;这些线程共享了方法区和堆&#xff0c;每个线程包含了程序计数器、本地方法栈和虚拟机栈接下来我们通过一个示意图介绍一下这个空间。 如图所示,当一个hell…

11.泛型、trait和生命周期(上)

标题 一、泛型数据的引入二、改写为泛型函数三、结构体/枚举中的泛型定义四、方法定义中的泛型 一、泛型数据的引入 下面是两个函数&#xff0c;分别用来取得整型和符号型vector中的最大值 use std::fs::File;fn get_max_float_value_from_vector(src: &[f64]) -> f64…

代码随想录-Day31

455. 分发饼干 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&#xff1b;并且每块饼干 j&#xff0c;都…

vs+qt5.0 使用poppler 操作库

Poppler 是一个用来生成 PDF 的C类库&#xff0c;从xpdf 继承而来。vs编译库如下&#xff1a; vs中只需要添加依赖库即可 头文件&#xff1a;

【UE5|水文章】在UMG上显示帧率

参考视频&#xff1a; https://www.youtube.com/watch?vH_NdvImlI68 蓝图&#xff1a;

数值分析笔记(二)函数插值

函数插值 已知函数 f ( x ) f(x) f(x)在区间[a,b]上n1个互异节点 { x i } i 0 n \{{x_i}\}_{i0}^{n} {xi​}i0n​处的函数值 { y i } i 0 n \{{y_i}\}_{i0}^{n} {yi​}i0n​&#xff0c;若函数集合 Φ \Phi Φ中函数 ϕ ( x ) \phi(x) ϕ(x)满足条件 ϕ ( x i ) y i ( i …

数据结构01 栈及其相关问题讲解【C++实现】

栈是一种线性数据结构&#xff0c;栈的特征是数据的插入和删除只能通过一端来实现&#xff0c;这一端称为“栈顶”&#xff0c;相应的另一端称为“栈底”。 栈及其特点 用一个简单的例子来说&#xff0c;栈就像一个放乒乓球的圆筒&#xff0c;底部是封住的&#xff0c;如果你想…

2024年了,苹果可以通话录音了

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 6月11日凌晨&#xff0c;苹果在WWDC24大会上&#xff0c;密集输出了酝酿多时的AI应用更新。苹果对通话、对话、图…

力扣 SQL题目

185.部门工资前三高的所有员工 公司的主管们感兴趣的是公司每个部门中谁赚的钱最多。一个部门的 高收入者 是指一个员工的工资在该部门的 不同 工资中 排名前三 。 编写解决方案&#xff0c;找出每个部门中 收入高的员工 。 以 任意顺序 返回结果表。 返回结果格式如下所示。 …

Android studio如何导入项目

打开解压好的安装包 找到build.gradle文件 打开查看gradle版本 下载对应的gradle版本Index of /gradle/&#xff08;镜像网站&#xff09; 下载all的对应压缩包 配置gradle的环境变量 新建GRADLE_HOME 将GRADLE_HOME加入到path中 将项目在Android studio中打开进行配置 将gr…

LM339模块电路故障查询

最近的电路测试中出现一个问题&#xff0c;如果不接液晶屏&#xff0c;LM339输入端是高电平&#xff0c;如果接了液晶屏&#xff0c;输入端就是低电平&#xff0c;即使在输入端加了上拉电阻&#xff0c;还是如前面的结论&#xff0c;如果越过LM339,直接和后级电路连接&#xff…

Python爬虫JS逆向进阶课程

这门课程是Python爬虫JS逆向进阶课程&#xff0c;将教授学员如何使用Python爬虫技术和JS逆向技术获取网站数据。学习者将学习如何分析网站的JS代码&#xff0c;破解反爬虫机制&#xff0c;以及如何使用Selenium和PhantomJS等工具进行模拟登录和数据抓取。课程结合实例演练和项目…

ThinkPHP邮件发送配置教程?怎么配置群发?

ThinkPHP邮件发送安全性如何保障&#xff1f;ThinkPHP如何实现&#xff1f; 无论是用户注册后的验证邮件&#xff0c;还是订单处理的通知邮件&#xff0c;都需要一个可靠的邮件发送机制。AokSend将详细介绍如何在ThinkPHP框架中配置邮件发送功能&#xff0c;并带您逐步了解其中…

Python武器库开发-武器库篇之Mongodb未授权漏洞扫描器(五十六)

Python武器库开发-武器库篇之Mongodb未授权漏洞扫描器(五十六) MongoDB 未授权访问漏洞简介以及危害 MongoDB是一款非常受欢迎的开源NoSQL数据库&#xff0c;广泛应用于各种Web应用和移动应用中。然而&#xff0c;由于默认配置的不当或者管理员的疏忽&#xff0c;导致不少Mon…

维度建模中的事实表设计原则

维度建模是一种数据仓库设计方法&#xff0c;其核心是围绕业务过程建立事实表和维度表。事实表主要存储与业务过程相关的度量数据&#xff0c;而维度表则描述这些度量数据的属性。 以下是设计事实表时需要遵循的几个重要原则&#xff0c;来源于《维度建模》那本书上&#xff0…

Dictionary 字典

文章目录 一、什么是字典1.1 字典的创建方式 一、什么是字典 字典&#xff1a; 用来存储数据&#xff0c;与列表和元组不一样的是&#xff0c;字典以键值对的形式对数据进行存储&#xff0c;也就是 key 和 value。相当于 Java 中的 Map。 注意&#xff1a; 1、 key 的值不可重…

[C++][数据结构][AVL树]详细讲解

目录 1.AVL树的概念2.AVL树节点的定义3. AVL树的插入4.AVL树的旋转1.新节点插入较高左子树的左侧 -- 左左&#xff1a;右单旋2.新节点插入较高右子树的右侧 -- 右右&#xff1a;左单旋3.新节点插入较高左子树的右侧 -- 左右&#xff1a;先左单旋再右单旋4.新节点插入较高右子树…

基于System-Verilog点亮LED灯

文章目录 一、System-Verilog介绍1.1System-Verilog 二、简单的语法介绍2.1接口实例2.2全局声明和语句实例2.3时间单位和精度2.4用户定义的类型2.5 枚举类型 三、流水灯参考 一、System-Verilog介绍 1.1System-Verilog SystemVerilog是一种硬件描述和验证语言&#xff08;HDV…