放弃Venn-Upset-花瓣图,拥抱二分网络

写在前面

让点随机排布在一个区域,保证点之间不重叠,并且将点的图层放到最上层,保证节点最清晰,然后边可以进行透明化,更加突出节点的位置。这里我新构建了布局函数 PolyRdmNotdCirG 来做这个随机排布。调用的是packcircles包的算法。使用和其他相似函数一样,这里我们重点介绍一下使用这种算法构造的二分网络布局。

微生物网络

ggClusterNet 安装
ggClusterNet包依赖的R包均在cran或者biocductor中,所以未能成功安装,需要检查依赖是否都顺利安装。如果网路问题,无法下载R包,可以在github中手动下载安装

#---ggClusterNet
devtools::install_github("taowenmicro/ggClusterNet")
#--如果无法安装请检查网络或者换个时间

导入R包和输入文件

#--导入所需R包#-------
library(ggplot2)
library(ggrepel)
library(ggClusterNet)
library(phyloseq)
library(dplyr)# 数据内置
#-----导入数据#-------
data(ps)#--可选
#-----导入数据#-------
ps = readRDS("../ori_data/ps_liu.rds")

这里我们提取一部分OTU,节省出图时间。

# ps
data(ps)ps_sub = filter_taxa(ps, function(x) sum(x ) > 20 , TRUE)
ps_sub = filter_taxa(ps_sub, function(x) sum(x ) < 30 , TRUE)
ps_sub

div_network函数 用于计算共有和特有关系

这个函数是之前我写的专门用于从OTU表格整理成Gephi的输入文件,所以大家直接用这个函数即可转到gephi进行操作。这次为了配合二分网络,我设置了参数flour = TRUE,代表是否仅仅提取共有部分和特有部分。

# ?div_network
result = div_network(ps_sub,num = 6)edge = result[[1]]
head(edge)# levels(edge$target)
# node = result[[2]]
# head(node)
#
# tail(node)
data = result[[3]]
dim(data)#----计算节点坐标
# flour参数,设置是否仅仅展示共有和特有的二分网络

div_culculate函数 核心算法,用于计算二分网络的节点和边的表格

参数解释:

distance = 1.1:

中心一团点到样本点距离

distance2 = 1.5:

中心点模块到独有OTU点之间距离

distance3 = 1.3:

样本点和独有OTU之间的距离

order = FALSE :

节点是否需要随机扰动效果

result <- div_culculate(table = result[[3]],distance = 1.1,distance2 = 1.5,distance3 = 1.3,order = FALSE)edge = result[[1]]
head(edge)plotdata = result[[2]]
head(plotdata)
#--这部分数据是样本点数据
groupdata <- result[[3]]

对OTU进行注释,方便添加到图形上

为了让节点更加丰富,这里我对节点文件添加了注释信息。

# table(plotdata$elements)
node =  plotdata[plotdata$elements == unique(plotdata$elements), ]otu_table = as.data.frame(t(vegan_otu(ps_sub)))
tax_table = as.data.frame(vegan_tax(ps_sub))
res = merge(node,tax_table,by = "row.names",all = F)
dim(res)
head(res)
row.names(res) = res$Row.names
res$Row.names = NULL
plotcord = resxx = data.frame(mean  =rowMeans(otu_table))
head(xx)
plotcord = merge(plotcord,xx,by = "row.names",all = FALSE)
head(plotcord)
# plotcord$Phylum
row.names(plotcord) = plotcord$Row.names
plotcord$Row.names = NULL
head(plotcord)
p = ggplot() + geom_segment(aes(x = X1, y = Y1, xend = X2, yend = Y2),data = edge, size = 0.3,color = "yellow") +geom_point(aes(X1, X2,fill = Phylum,size =mean ),pch = 21, data = plotcord) +geom_point(aes(X1, X2),pch = 21, data = groupdata,size = 5,fill = "blue",color = "black") +geom_text_repel(aes(X1, X2,label = elements ), data = groupdata) +theme_void()pggsave("4.png",p,width = 12,height = 8)

图片

map = as.data.frame(sample_data(ps_sub))map$Group2 <- rep(c("A1","A2","A3","A4","A5","A6"),3)sample_data(ps_sub) <- map
# ?div_network
result = div_network(ps_sub,num = 3,group = "Group2",flour = TRUE)edge = result[[1]]
head(edge)# levels(edge$target)
# node = result[[2]]
# head(node)
#
# tail(node)data = result[[3]]
dim(data)#----计算节点坐标
# flour参数,设置是否仅仅展示共有和特有的二分网络result <- div_culculate(table = result[[3]],distance = 1.1,distance2 = 1.5,distance3 = 1.3,order = FALSE)edge = result[[1]]
head(edge)plotdata = result[[2]]
head(plotdata)groupdata <- result[[3]]# table(plotdata$elements)
node =  plotdata[plotdata$elements == unique(plotdata$elements), ]otu_table = as.data.frame(t(vegan_otu(ps_sub)))
tax_table = as.data.frame(vegan_tax(ps_sub))
res = merge(node,tax_table,by = "row.names",all = F)
dim(res)
head(res)
row.names(res) = res$Row.names
res$Row.names = NULL
plotcord = resxx = data.frame(mean  =rowMeans(otu_table))
head(xx)
plotcord = merge(plotcord,xx,by = "row.names",all = FALSE)
head(plotcord)
# plotcord$Phylum
row.names(plotcord) = plotcord$Row.names
plotcord$Row.names = NULL
head(plotcord)p = ggplot() + geom_segment(aes(x = X1, y = Y1, xend = X2, yend = Y2),data = edge, size = 0.3,color = "yellow") +geom_point(aes(X1, X2,fill = Phylum,size =mean ),pch = 21, data = plotcord) +geom_point(aes(X1, X2),pch = 21, data = groupdata,size = 5,fill = "blue",color = "black") +geom_text_repel(aes(X1, X2,label = elements ), data = groupdata) +theme_void()
p
ggsave("4.png",p,width = 12,height = 8)

图片

map = as.data.frame(sample_data(ps_sub))map = map[1:12,]# map$Group2 <- rep(c("A1","A2","A3","A4","A5","A6"),2)
sample_data(ps_sub) <- mapresult = div_network(ps_sub,num = 3,group = "Group",flour = TRUE)edge = result[[1]]
head(edge)# levels(edge$target)
# node = result[[2]]
# head(node)
#
# tail(node)data = result[[3]]
dim(data)result <- div_culculate(table = result[[3]],distance = 1.1,distance2 = 1.5,distance3 = 1.3,order = FALSE)edge = result[[1]]
head(edge)plotdata = result[[2]]
head(plotdata)groupdata <- result[[3]]# table(plotdata$elements)
node =  plotdata[plotdata$elements == unique(plotdata$elements), ]otu_table = as.data.frame(t(vegan_otu(ps_sub)))
tax_table = as.data.frame(vegan_tax(ps_sub))
res = merge(node,tax_table,by = "row.names",all = F)
dim(res)
head(res)
row.names(res) = res$Row.names
res$Row.names = NULL
plotcord = resxx = data.frame(mean  =rowMeans(otu_table))
head(xx)
plotcord = merge(plotcord,xx,by = "row.names",all = FALSE)
head(plotcord)
# plotcord$Phylum
row.names(plotcord) = plotcord$Row.names
plotcord$Row.names = NULL
head(plotcord)p = ggplot() + geom_segment(aes(x = X1, y = Y1, xend = X2, yend = Y2),data = edge, size = 0.3,color = "yellow") +geom_point(aes(X1, X2,fill = Phylum,size =mean ),pch = 21, data = plotcord) +geom_point(aes(X1, X2),pch = 21, data = groupdata,size = 5,fill = "blue",color = "black") +geom_text_repel(aes(X1, X2,label = elements ), data = groupdata) +theme_void()p# ggsave("4.png",p,width = 12,height = 22)

图片

图片

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/26629.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

商家转账到零钱最全面攻略:申请、使用、注意事项等详解

一、微信商家转账到零钱功能概述 微信支付作为国内最大社交软件的增值服务&#xff0c;在商业活动中广泛使用。其开发的营销功能“商家转账到零钱”则允许商家直接将资金转入用户的微信钱包&#xff0c;操作简便快捷。本文将详细探讨此功能的使用条件、操作步骤以及解答一些常…

深入理解java设计模式之单例模式

目录 概述单例模式是什么单例模式的使用场景单例模式的优缺点单例模式的几种实现方式饿汉式懒汉式双重检查锁定机制静态内部类枚举使用容器几种可能破坏单例类的方法多线程环境下的竞争条件使用反射机制使用序列化多个类加载器概述 单例模式是什么 定义:单例模式确保一个类在…

Java中Transactional在不同方法间的穿透性,rollbackFor参数含义

哈喽&#xff0c;大家好&#xff0c;我是木头左&#xff01; 在Java开发中&#xff0c;经常会遇到需要在一个事务中执行多个操作的场景。为了确保这些操作的原子性&#xff0c;可以使用Spring框架提供的Transactional注解来实现事务管理。然而&#xff0c;在实际开发过程中&…

LeetCode刷题之HOT100之验证二叉搜索树

1、题目描述 2、逻辑分析 要求给定的根节点是否是有效的二叉树。有效的二叉搜索树定义如上。那么如何求解呢&#xff1f;题解给出了两张求解方法&#xff1a;递归、中序遍历。这边倾向于中序遍历&#xff0c;中序遍历后的二叉树是升序排序的&#xff0c;以这个性质即可解题。 …

Prometheus——部署详解

目录 一、Prometheus Server端安装和相关配置 1.上传安装包并解压 2.配置系统启动文件 3.启动 二、部署Node Exporters监控系统指标 三、监控Mysql配置示例 1.Mysql服务器操作 2.Prometheus服务器操作 四、监控Nginx配置示例 1.在Nginx服务器操作 2.Prometheus服务器…

HTML列表和表格标签

目录 1.列表标签 1.1无序列表 1.2有序列表 1.3定义列表 2. 表格标签、 2.1表格标签的属性 2.2合并单元格 1.列表标签 1.1无序列表 <ul>: [type 属性&#xff1a; disc( 实心圆点 )( 默认 ) 、 circle( 空心圆圈 ) 、 square( 实心方块 )] <li>: 列表中…

vue+java实现简易AI问答组件(基于百度文心大模型)

一、需求 公司想要在页面中加入AI智能对话功能&#xff0c;故查找免费gpt接口&#xff0c;最终决定百度千帆大模型&#xff08;进入官网、官方文档中心&#xff09;&#xff1b; 二、主要功能列举 AI智能对话&#xff1b;记录上下文回答环境&#xff1b;折叠/展开窗口&#…

用Qt 中的QPainter类画时钟

在Qt中&#xff0c;我们可以通过QPainter类来绘制各种图形&#xff0c;包括时钟指针。以下是一个简单的例子&#xff0c;展示了如何在Qt中绘制一个简单的时钟指针。 #include <QPainter> #include <QWidget> #include <QTimer> #include <QTime>class…

管道(channel)select

select功能&#xff1a;解决多个管道的选择问题&#xff0c;也可以叫多路复用&#xff0c;可以从多个管道中随机公平的选择一个来执行 case后面必须进行的是io操作&#xff0c;不能是等值&#xff0c;随机去选择一个io操作 default防止select被阻塞&#xff0c;加入default 只…

使用MATLAB对地铁站、公交站等求解最短路径

使用MATLAB对城市的地铁站、公交站等站点&#xff0c;根据站点的经纬度坐标和彼此之间的权重&#xff0c;求解其最短路径、途径站点和路程 已知的数据如图&#xff0c;是西安市地铁站点的数据&#xff0c;保存在一个Excel里 如图&#xff0c;每列的内容都在上面&#xff0c;不…

滚动条样式

/*滚动条*/ //滚动条没有滑块的轨道部分. ::-webkit-scrollbar-track-piece {background: #fff;border-radius: 0px;opacity: 1;border: 1px solid #D9D9D9; } //整个滚动条 ::-webkit-scrollbar {width: 8px;height: 8px;background-color: transparent; } //滚动条上的滚动滑…

经常加班却不给加班费,我又不想离开这个单位,该怎么办?

经常加班却不给加班费&#xff0c;我又不想离开这个单位&#xff0c;该怎么办&#xff1f; --#李秘书讲写作#教你如何在维护权益与保持工作稳定间找到平衡&#xff1f; 在现代社会中&#xff0c;加班已经成为许多职场人士的常态。你也许也不例外&#xff0c;每天都在忙碌的工作…

Python教程:机器学习 - 百分位数(4)

什么是百分位数&#xff1f; 统计学中使用百分位数&#xff08;Percentiles&#xff09;为您提供一个数字&#xff0c;该数字描述了给定百分比值小于的值。 例如&#xff1a;假设我们有一个数组&#xff0c;包含住在一条街上的人的年龄。 ages [5,31,43,48,50,41,7,11,15,3…

深入理解服务器路由功能:配置与应用详解

在现代网络结构中&#xff0c;服务器不仅仅是提供数据和服务的中心节点&#xff0c;它们还经常承担着路由的角色&#xff0c;负责在不同网络之间转发数据包。这一过程依赖于服务器的路由功能&#xff0c;通过精确的路由表配置和管理&#xff0c;确保数据能够高效、准确地到达目…

SSL协议在实际生活中有哪些应用实例?

SSL协议的实际应用案例 SSL&#xff08;Secure Sockets Layer&#xff09;协议是一种网络通信协议&#xff0c;用于在客户端和服务器之间建立加密链接&#xff0c;以确保数据在传输过程中的安全性。尽管SSL协议已被TLS&#xff08;Transport Layer Security&#xff09;协议所取…

AMS(ActivityManagerService)源码解析,Activity是如何被打开的

AMS解析&#xff0c;Activity是如何被打开的 前言总结1. PMS保存App缩略信息2. startActivity发送请求3. AMS从PMS获取目标Activity的相关信息3.1 AMS部分3.2 PMS部分 4. AMS操作Activity返回栈&#xff0c;将目标Activity调用resume5. AMS将目标页面信息发给ActivityThread6. …

STM32学习笔记(二)--GPIO通用输入输出口详解

&#xff08;1&#xff09;配置步骤1.使用RCC开启GPIO时钟2.使用GPIO_Init函数初始化GPIO3.使用输入或输出的函数等来控制GPIO 其中涉及外设有RCC、GPIO &#xff08;2&#xff09;代码示例 案例1&#xff08;设置PA0为推挽输出&#xff09; RCC_APB2PeriphClockCmd(RCC_APB2…

使用Spring Cloud设计电商系统架构

在当今互联网高速发展的时代&#xff0c;电子商务系统成为了商家与用户互动的主要方式之一。为了能够更好地应对高并发、可扩展性、灵活性等需求&#xff0c;微服务架构逐渐成为设计电商系统的首选方案。Spring Cloud作为一个成熟的微服务框架&#xff0c;为开发人员提供了一整…

后端开发面试题4(附答案)

前言 在下首语言是golang,所以会用他作为示例。 原文参见 @arialdomartini的: Back-End Developer Interview Questions 语言相关问题 1. 告诉我你的首选语言的三个最坏的缺陷。 Golang虽然在很多方面表现出色,但它并非完美无缺,根据已有的讨论和批评,以下是Go语言被广泛…

深入浅出:面向对象软件设计原则(OOD)

目录 前言 1.单一责任原则&#xff08;SRP&#xff09; 2.开发封闭原则&#xff08;OCP&#xff09; 3.里氏替换原则&#xff08;LSP&#xff09; 4.依赖倒置原则&#xff08;DIP&#xff09; 5.接口分离原则&#xff08;ISP) 6.共同封闭原则&#xff08;CCP&#xff09…