放弃Venn-Upset-花瓣图,拥抱二分网络

写在前面

让点随机排布在一个区域,保证点之间不重叠,并且将点的图层放到最上层,保证节点最清晰,然后边可以进行透明化,更加突出节点的位置。这里我新构建了布局函数 PolyRdmNotdCirG 来做这个随机排布。调用的是packcircles包的算法。使用和其他相似函数一样,这里我们重点介绍一下使用这种算法构造的二分网络布局。

微生物网络

ggClusterNet 安装
ggClusterNet包依赖的R包均在cran或者biocductor中,所以未能成功安装,需要检查依赖是否都顺利安装。如果网路问题,无法下载R包,可以在github中手动下载安装

#---ggClusterNet
devtools::install_github("taowenmicro/ggClusterNet")
#--如果无法安装请检查网络或者换个时间

导入R包和输入文件

#--导入所需R包#-------
library(ggplot2)
library(ggrepel)
library(ggClusterNet)
library(phyloseq)
library(dplyr)# 数据内置
#-----导入数据#-------
data(ps)#--可选
#-----导入数据#-------
ps = readRDS("../ori_data/ps_liu.rds")

这里我们提取一部分OTU,节省出图时间。

# ps
data(ps)ps_sub = filter_taxa(ps, function(x) sum(x ) > 20 , TRUE)
ps_sub = filter_taxa(ps_sub, function(x) sum(x ) < 30 , TRUE)
ps_sub

div_network函数 用于计算共有和特有关系

这个函数是之前我写的专门用于从OTU表格整理成Gephi的输入文件,所以大家直接用这个函数即可转到gephi进行操作。这次为了配合二分网络,我设置了参数flour = TRUE,代表是否仅仅提取共有部分和特有部分。

# ?div_network
result = div_network(ps_sub,num = 6)edge = result[[1]]
head(edge)# levels(edge$target)
# node = result[[2]]
# head(node)
#
# tail(node)
data = result[[3]]
dim(data)#----计算节点坐标
# flour参数,设置是否仅仅展示共有和特有的二分网络

div_culculate函数 核心算法,用于计算二分网络的节点和边的表格

参数解释:

distance = 1.1:

中心一团点到样本点距离

distance2 = 1.5:

中心点模块到独有OTU点之间距离

distance3 = 1.3:

样本点和独有OTU之间的距离

order = FALSE :

节点是否需要随机扰动效果

result <- div_culculate(table = result[[3]],distance = 1.1,distance2 = 1.5,distance3 = 1.3,order = FALSE)edge = result[[1]]
head(edge)plotdata = result[[2]]
head(plotdata)
#--这部分数据是样本点数据
groupdata <- result[[3]]

对OTU进行注释,方便添加到图形上

为了让节点更加丰富,这里我对节点文件添加了注释信息。

# table(plotdata$elements)
node =  plotdata[plotdata$elements == unique(plotdata$elements), ]otu_table = as.data.frame(t(vegan_otu(ps_sub)))
tax_table = as.data.frame(vegan_tax(ps_sub))
res = merge(node,tax_table,by = "row.names",all = F)
dim(res)
head(res)
row.names(res) = res$Row.names
res$Row.names = NULL
plotcord = resxx = data.frame(mean  =rowMeans(otu_table))
head(xx)
plotcord = merge(plotcord,xx,by = "row.names",all = FALSE)
head(plotcord)
# plotcord$Phylum
row.names(plotcord) = plotcord$Row.names
plotcord$Row.names = NULL
head(plotcord)
p = ggplot() + geom_segment(aes(x = X1, y = Y1, xend = X2, yend = Y2),data = edge, size = 0.3,color = "yellow") +geom_point(aes(X1, X2,fill = Phylum,size =mean ),pch = 21, data = plotcord) +geom_point(aes(X1, X2),pch = 21, data = groupdata,size = 5,fill = "blue",color = "black") +geom_text_repel(aes(X1, X2,label = elements ), data = groupdata) +theme_void()pggsave("4.png",p,width = 12,height = 8)

图片

map = as.data.frame(sample_data(ps_sub))map$Group2 <- rep(c("A1","A2","A3","A4","A5","A6"),3)sample_data(ps_sub) <- map
# ?div_network
result = div_network(ps_sub,num = 3,group = "Group2",flour = TRUE)edge = result[[1]]
head(edge)# levels(edge$target)
# node = result[[2]]
# head(node)
#
# tail(node)data = result[[3]]
dim(data)#----计算节点坐标
# flour参数,设置是否仅仅展示共有和特有的二分网络result <- div_culculate(table = result[[3]],distance = 1.1,distance2 = 1.5,distance3 = 1.3,order = FALSE)edge = result[[1]]
head(edge)plotdata = result[[2]]
head(plotdata)groupdata <- result[[3]]# table(plotdata$elements)
node =  plotdata[plotdata$elements == unique(plotdata$elements), ]otu_table = as.data.frame(t(vegan_otu(ps_sub)))
tax_table = as.data.frame(vegan_tax(ps_sub))
res = merge(node,tax_table,by = "row.names",all = F)
dim(res)
head(res)
row.names(res) = res$Row.names
res$Row.names = NULL
plotcord = resxx = data.frame(mean  =rowMeans(otu_table))
head(xx)
plotcord = merge(plotcord,xx,by = "row.names",all = FALSE)
head(plotcord)
# plotcord$Phylum
row.names(plotcord) = plotcord$Row.names
plotcord$Row.names = NULL
head(plotcord)p = ggplot() + geom_segment(aes(x = X1, y = Y1, xend = X2, yend = Y2),data = edge, size = 0.3,color = "yellow") +geom_point(aes(X1, X2,fill = Phylum,size =mean ),pch = 21, data = plotcord) +geom_point(aes(X1, X2),pch = 21, data = groupdata,size = 5,fill = "blue",color = "black") +geom_text_repel(aes(X1, X2,label = elements ), data = groupdata) +theme_void()
p
ggsave("4.png",p,width = 12,height = 8)

图片

map = as.data.frame(sample_data(ps_sub))map = map[1:12,]# map$Group2 <- rep(c("A1","A2","A3","A4","A5","A6"),2)
sample_data(ps_sub) <- mapresult = div_network(ps_sub,num = 3,group = "Group",flour = TRUE)edge = result[[1]]
head(edge)# levels(edge$target)
# node = result[[2]]
# head(node)
#
# tail(node)data = result[[3]]
dim(data)result <- div_culculate(table = result[[3]],distance = 1.1,distance2 = 1.5,distance3 = 1.3,order = FALSE)edge = result[[1]]
head(edge)plotdata = result[[2]]
head(plotdata)groupdata <- result[[3]]# table(plotdata$elements)
node =  plotdata[plotdata$elements == unique(plotdata$elements), ]otu_table = as.data.frame(t(vegan_otu(ps_sub)))
tax_table = as.data.frame(vegan_tax(ps_sub))
res = merge(node,tax_table,by = "row.names",all = F)
dim(res)
head(res)
row.names(res) = res$Row.names
res$Row.names = NULL
plotcord = resxx = data.frame(mean  =rowMeans(otu_table))
head(xx)
plotcord = merge(plotcord,xx,by = "row.names",all = FALSE)
head(plotcord)
# plotcord$Phylum
row.names(plotcord) = plotcord$Row.names
plotcord$Row.names = NULL
head(plotcord)p = ggplot() + geom_segment(aes(x = X1, y = Y1, xend = X2, yend = Y2),data = edge, size = 0.3,color = "yellow") +geom_point(aes(X1, X2,fill = Phylum,size =mean ),pch = 21, data = plotcord) +geom_point(aes(X1, X2),pch = 21, data = groupdata,size = 5,fill = "blue",color = "black") +geom_text_repel(aes(X1, X2,label = elements ), data = groupdata) +theme_void()p# ggsave("4.png",p,width = 12,height = 22)

图片

图片

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/26629.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

商家转账到零钱最全面攻略:申请、使用、注意事项等详解

一、微信商家转账到零钱功能概述 微信支付作为国内最大社交软件的增值服务&#xff0c;在商业活动中广泛使用。其开发的营销功能“商家转账到零钱”则允许商家直接将资金转入用户的微信钱包&#xff0c;操作简便快捷。本文将详细探讨此功能的使用条件、操作步骤以及解答一些常…

Java中Transactional在不同方法间的穿透性,rollbackFor参数含义

哈喽&#xff0c;大家好&#xff0c;我是木头左&#xff01; 在Java开发中&#xff0c;经常会遇到需要在一个事务中执行多个操作的场景。为了确保这些操作的原子性&#xff0c;可以使用Spring框架提供的Transactional注解来实现事务管理。然而&#xff0c;在实际开发过程中&…

LeetCode刷题之HOT100之验证二叉搜索树

1、题目描述 2、逻辑分析 要求给定的根节点是否是有效的二叉树。有效的二叉搜索树定义如上。那么如何求解呢&#xff1f;题解给出了两张求解方法&#xff1a;递归、中序遍历。这边倾向于中序遍历&#xff0c;中序遍历后的二叉树是升序排序的&#xff0c;以这个性质即可解题。 …

Prometheus——部署详解

目录 一、Prometheus Server端安装和相关配置 1.上传安装包并解压 2.配置系统启动文件 3.启动 二、部署Node Exporters监控系统指标 三、监控Mysql配置示例 1.Mysql服务器操作 2.Prometheus服务器操作 四、监控Nginx配置示例 1.在Nginx服务器操作 2.Prometheus服务器…

HTML列表和表格标签

目录 1.列表标签 1.1无序列表 1.2有序列表 1.3定义列表 2. 表格标签、 2.1表格标签的属性 2.2合并单元格 1.列表标签 1.1无序列表 <ul>: [type 属性&#xff1a; disc( 实心圆点 )( 默认 ) 、 circle( 空心圆圈 ) 、 square( 实心方块 )] <li>: 列表中…

vue+java实现简易AI问答组件(基于百度文心大模型)

一、需求 公司想要在页面中加入AI智能对话功能&#xff0c;故查找免费gpt接口&#xff0c;最终决定百度千帆大模型&#xff08;进入官网、官方文档中心&#xff09;&#xff1b; 二、主要功能列举 AI智能对话&#xff1b;记录上下文回答环境&#xff1b;折叠/展开窗口&#…

使用MATLAB对地铁站、公交站等求解最短路径

使用MATLAB对城市的地铁站、公交站等站点&#xff0c;根据站点的经纬度坐标和彼此之间的权重&#xff0c;求解其最短路径、途径站点和路程 已知的数据如图&#xff0c;是西安市地铁站点的数据&#xff0c;保存在一个Excel里 如图&#xff0c;每列的内容都在上面&#xff0c;不…

滚动条样式

/*滚动条*/ //滚动条没有滑块的轨道部分. ::-webkit-scrollbar-track-piece {background: #fff;border-radius: 0px;opacity: 1;border: 1px solid #D9D9D9; } //整个滚动条 ::-webkit-scrollbar {width: 8px;height: 8px;background-color: transparent; } //滚动条上的滚动滑…

经常加班却不给加班费,我又不想离开这个单位,该怎么办?

经常加班却不给加班费&#xff0c;我又不想离开这个单位&#xff0c;该怎么办&#xff1f; --#李秘书讲写作#教你如何在维护权益与保持工作稳定间找到平衡&#xff1f; 在现代社会中&#xff0c;加班已经成为许多职场人士的常态。你也许也不例外&#xff0c;每天都在忙碌的工作…

用idea将java文件打成jar包

一、用idea将java文件打成jar包 1、在idea上选择file—Project Structure 2、Artifacts —点–JAR—From modules with dependencies 3、选择要打包的java文件 4、Build — Build Artifacts 5、找到刚才添加的Artifacts直接Build 6、生成jar包文件

C语言 | Leetcode C语言题解之第140题单词拆分II

题目&#xff1a; 题解&#xff1a; struct Trie {int ch[26];bool flag; } trie[10001];int size;void insert(char* s, int sSize) {int add 0;for (int i 0; i < sSize; i) {int x s[i] - a;if (trie[add].ch[x] 0) {trie[add].ch[x] size;memset(trie[size].ch, 0…

C语言 | Leetcode C语言题解之第139题单词拆分

题目&#xff1a; 题解&#xff1a; unsigned long long Hash(char* s, int l, int r) {unsigned long long value 0;for (int i l; i < r; i) {value value * 2333ull;value s[i] - a 1;}return value; } bool query(unsigned long long* rec, int len_rec, unsigned…

【代码随想录】【算法训练营】【第30天 1】 [322]重新安排行程 [51]N皇后

前言 思路及算法思维&#xff0c;指路 代码随想录。 题目来自 LeetCode。 day 30&#xff0c;周四&#xff0c;好难&#xff0c;会不了一点~ 题目详情 [322] 重新安排行程 题目描述 322 重新安排行程 解题思路 前提&#xff1a;…… 思路&#xff1a;回溯。 重点&…

抖音a_bogus爬虫逆向补环境

抖音a_bogus爬虫逆向补环境 写在前面 https://github.com/ShilongLee/Crawler 这是我为了学习爬虫而搭建的爬虫服务器项目&#xff0c;目标是作为一个高性能的可靠爬虫服务器为广大爬虫爱好者和安全工程师提供平台进行学习爬虫&#xff0c;了解爬虫&#xff0c;应对爬虫。现已…

Github 2024-06-13开源项目日报Top10

根据Github Trendings的统计,今日(2024-06-13统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目3非开发语言项目2Shell项目1TypeScript项目1Swift项目1PHP项目1Blade项目1JavaScript项目1从零开始构建你喜爱的技术 创建周期:2156…

如何在浏览器书签栏设置2个书签实现一键到达网页顶部和底部

本次设置浏览器为&#xff1a;Chrome浏览器&#xff08;其他浏览器可自行测试&#xff09; 1&#xff0c;随便收藏一个网页到浏览器书签栏 2&#xff0c;右键这个书签 3&#xff0c;修改 4&#xff0c;修改名称 5&#xff0c;修改网址&#xff1a; javascript:(function(…

arm64电源管理之PSCI

PSCIPower State Coordination Interface功耗状态协同接口SCPISystem Control and Power Interface系统控制和电源接口SCMISystem Control and Management Interface系统控制和管理接口SMCCCSMC Calling ConventionSMC调用约定 scpi&#xff1b;通过mailbox核间通信&#xff0c…

借助Historian Connector + TDengine,打造工业创新底座

在工业自动化的领域中&#xff0c;数据的采集、存储和分析是实现高效决策和操作的基石。AVEVA Historian (原 Wonderware Historian) 作为领先的工业实时数据库&#xff0c;专注于收集和存储高保真度的历史工艺数据。与此同时&#xff0c;TDengine 作为一款专为时序数据打造的高…

FullCalendar日历组件集成实战(11)

背景 有一些应用系统或应用功能&#xff0c;如日程管理、任务管理需要使用到日历组件。虽然Element Plus也提供了日历组件&#xff0c;但功能比较简单&#xff0c;用来做数据展现勉强可用。但如果需要进行复杂的数据展示&#xff0c;以及互动操作如通过点击添加事件&#xff0…

怎么防止源代码泄露?9种方法教会你!

怎么防止源代码泄露&#xff1f;首先要了解员工可以通过哪些方式将源代码传输出去&#xff01; 物理方法&#xff1a; — 网线直连&#xff0c;即把网线从墙上插头拔下来&#xff0c;然后和一个非受控电脑直连; — winPE启动&#xff0c;通过光盘或U盘的winPE启动&#xff0c;甚…