【网络安全】在网络中如何对报文和发送实体进行鉴别?

目录

1、报文鉴别

(1)使用数字签名进行鉴别

(2)密码散列函数

(3)报文鉴别码

2、实体鉴别


        鉴别(authentication) 是网络安全中一个很重要的问题。

        一是要鉴别发信者,即验证通信的对方的确是自己所要通信的对象,而不是其他的冒充者。这就是实体鉴别。实体可以是发信的人,也可以是一个进程(客户端或服务器)。因此这也常称为端点鉴别。

        二是要鉴别报文的完整性,即对方所传送的报文没有被他人篡改过。

1、报文鉴别

(1)使用数字签名进行鉴别

        我们知道,书信或文件可根据亲笔签名或印章来鉴别其真实性。那么在计算机网络中传送的报文,则可使用数字签名进行鉴别。

      为了进行数字签名,A 用其私钥 SK_{A} 对报文 X 进行 D 运算。D 运算本来叫作解密运算,可是,还没有加密怎么就进行解密呢?其实 D 运算只是把报文变换为某种不可读的密文(扮演了加密角色)。A 把经过 D 运算得到的密文传送给 B。B 为了核实签名,用 A 的公钥进行 E 运算,还原出明文 X。//数字签名原理,只有私钥持有者才能进行签名

        请注意,任何人用 A 的公钥 PK_{A} 进行 E 运算后都可以得出 A 发送的明文。可见上述通信方式并非是为了保密,而是为了进行签名和核实签名,即确认此明文的确是 A 发送的。

        所以,知道为什么数字签名具有不可否认性了吧?

        因为除 A 外没有别人持有 A 的私钥 SK_{A},所以除 A 外没有别人能产生密文 D_{SK_{A}}(X)。这样,B 确信报文 X 是 A 签名发送的。这就鉴别了报文的发送者。同理,其他人如果篡改过报文,但由于无法得到 A 的私钥 SK_{A} 对篡改后的报文进行 D 运算,那么 B 对收到报文后,进行核实签名的 E 运算,将会得出不可读的明文,因而不会被欺骗。这样就保证了报文的完整性。

        不过数字签名仅对报文进行了签名,却未对报文 X 本身保密。因为如果有人截获到密文D_{SK_{A}}(X),并知道发送者身份,若通过某种手段获得了发送者的公钥 PK_{A},就能解出报文的内容。

        那如何才能同时实现保密通信和数字签名呢?

        如上图所示,图中 SK_{A} 和 SK_{B} 分别为 A 和 B 的私钥,而 PK_{A} 和 PK_{B} 分别为 A 和 B 的公钥。

        我们首先用 A 的私钥对明文 X 进行签名,得到 D_{SK_{A}}(X),然后,再用 B 的公钥对此签名内容进行加密,得到 E_{PK_{B}}(SK_{A}(X)),通过这种方式,就同时实现了保密通信和数字签名。

        不过,上图所示的方法虽然在理论上是正确的,但很难用于现实生活中。这是因为要对报文(可能很长的报文)先后要进行两次 D 运算和两次 E 运算,这种运算量太大,要花费非常多的 CPU 时间,这在很多情况下是无法令人接受的。//非对称加密的计算量大

        因此目前对网络上传送的大量报文,普遍都使用开销小得多的对称密钥加密。要实现数字签名当然必须使用公钥密码,但一定要设法减小公钥密码算法的开销,所以就有了密码散列函数报文鉴别码//减少算法开销,提高加密性能

(2)密码散列函数

        散列函数(又称为杂凑函数,或哈希函数)在计算机领域中使用得很广泛。密码学对散列函数有非常高的要求,因此符合密码学要求的散列函数又常称为 密码散列函数(cryptographic hash function)

        散列函数 H(X) 一般具有以下四个特点:

        (1)散列函数采用确定算法,因此相同的输入必定得出相同的输出。

        (2)散列函数的输出不可避免的会产生碰撞现象。因此,精心挑选的密码散列函数应当非常不易发生碰撞,即应具有很好的抗碰撞性//Hash冲突

        (3)若给出散列值 H(X),则无人能找出输入的报文 X。也就是说,散列函数是一种单向函数(one-way function),即逆向变换是不可能的//不可逆

        (4)散列函数输出的每一个比特,都与输入的每一个比特有关;哪怕仅改动输入的一个比特,输出也会相差极大

        目前,比较出名的密码散列函数有 MD5 SHA-1。MD 就是 Message Digest 的缩写,意思是报文摘要,MD5 就是指报文摘要的第 5 个版本。不过随着技术的发展,MD5 的安全性产生了动摇,于是 MD5 最终被 安全散列算法SHA(Secure Hash Algorithm) 的标准所取代。//散列函数的历史

        MD5 算法的大致过程如下:

  1. 先把任意长的报文按模 2^{64} 计算其余数(64位),追加在报文的后面。
  2. 在报文和余数之间填充 1~512 位,使得填充后的总长度是 512 的整数倍。填充的首位是 1,后面都是 0。
  3. 把追加和填充后的报文分割为许多 512 位的数据块,每个 512 位的报文数据再分成 4 个 128 位的数据块依次送到不同的散列函数进行 4 轮计算。每一轮又都按 32 位的小数据块进行复杂的运算。一直到最后计算出 MD5 报文摘要代码(128位)。

        这样得出的 MD5 报文摘要代码中的每一位都与原来报文中的每一位有关。由此可见,像 MD5 这样的密码散列函数实际上已是个相当复杂的算法,而不是简单的函数了。

(3)报文鉴别码

        使用报文鉴别码对报文进行鉴别的一般步骤:

  1. 用户 A 首先根据自己的明文 X 计算出散列 H(X)(例如,使用 MD5)。为简单起见,我们把得出的散列 H(X) 记为 H。//在明文后加散列值,确保内容不被更改
  2. 用户 A 把散列 H 拼接在明文 X 的后面,生成了扩展的报文 (X, H),然后发送给 B。
  3. 用户 B 收到了这个扩展的报文 (X,H)。因为散列的长度 H 是早已知道的固定值,因此很容易把收到的散列 H 和明文 X 分离开。B 通过散列函数的运算,计算出所收到的明文 X 的散列 H(X)。若 H(X) = H,则 B 就认为所收到的明文是 A 发送过来的。//一旦内容更改,散列值就对不上

        但是,以上步骤有一个问题,如果某个入侵者创建了一个伪造的报文 M,然后也用同样的方法计算出其散列 H(M),并且冒充 A 把拼接有散列的扩展报文发送给 B。B 收到扩展的报文 (M,H(M)) 后,按照上面步骤的方法进行验证,发现一切都是正常的,就会误认为所收到的伪造报文就是 A 发送的。//也就是说,不改变部分报文,而是篡改整个报文,上述步骤就验不出来了,缺点就在于简单的散列并没有加入用户A的特有标记

        那如何解决伪造整段报文的问题呢?

        那就是给每一个报文都打上 A 特有的标记,办法可以是:A 把双方共享的密钥 K(K就是一串不太长的字符串)拼接到报文 X 后,进行散列运算。散列运算得出的结果为固定长度的 H(X+K),称为 报文鉴别码 MAC (Message Authentication Code)。A 把报文鉴别码 MAC 拼接在报文 X 后面,得到扩展的报文,发送给 B,如下图所示://加入A的密钥K进行散列

        B 收到扩展的报文后,把报文鉴别码 MAC 与报文 X 进行分离。B 再用同样的密钥 K 与报文 X 拼接,进行散列运算,把得出的结果 H(X+K) 与分离出的报文鉴别码 MAC 进行比较。如相等,就可确认收到的报文 X 的确是 A 发送的。

        所以,只要入侵者不掌握密钥 K,就无法伪造 A 的报文鉴别码 MAC,因而无法伪造 A 发送的报文。像这样的报文鉴别码称为数字签名,或数字指纹

        但是,又怎样安全有效的来分发通信双方共享的密钥 K 呢?

        一种可行的方法是采用公钥系统,具体方式如下图所示:

        用户 A 对报文 X 进行散列运算,得出固定长度的散列 H(X)。用自己的私钥对 H(X) 进行 D 运算(也就是用私钥进行加密),得出已签名的但非固定长度的报文鉴别码 MAC。

        请注意,这里没有对报文 X 进行加密,而是对很短的散列 H(X) 进行 D 运算,因此这种运算仍然是很快的。A 把已签名的非固定长度的报文鉴别码 MAC,拼接在报文 X 后面,构成扩展的报文发送给 B。//原理:A用自己的私钥进行签名,B用A的公钥进行鉴别

        B 收到扩展的报文后,先进行报文分离。虽然 B 不知道已签名的报文鉴别码的长度,但由于报文 X 是明文,其结束处可以设有标记,因此分离出 MAC 不困难。分离后,B 对报文 X 进行散列函数运算,同时用 A 的公钥对分离出的已签名的报文鉴别码 MAC 进行 E 运算(也就是用公钥进行解密)。最后对这两个运算结果 H(X) 进行比较。如相等,就说明一切正确。由于入侵者没有 A 的私钥,因此不可能伪造出 A 发出的报文。

        所以,采用这种方法得到的扩展的报文,不仅是不可伪造的,也是不可否认的。

2、实体鉴别

        实体鉴别和报文鉴别不同。报文鉴别是对每一个收到的报文都要鉴别报文的发送者,而实体鉴别是在系统接入的全部持续时间内对和自己通信的对方实体只需验证一次。//需要验证的次数不一样

        简单的实体鉴别过程:

        如下图,A 向远端的 B 发送带有自己身份(例如,A 的姓名)和口令的报文,并且使用双方约定好的共享对称密钥 K_{AB} 进行加密。B 收到此报文后,用共享对称密钥 K_{AB} 进行解密,从而鉴别实体 A 的身份。//给出系统的身份验证信息

        那么问题来了,例如,入侵者 C 可以从网络上截获 A 发给 B 的报文,C 并不需要破译这个报文(因为破译可能很费时间),而是直接把这个由 A 加密的报文发送给 B,使 B 误认为 C 就是 A;然后 B 就向伪装成 A 的 C 发送许多本来应当发给 A 的报文。这就叫作重放攻击(replay attack)。C 甚至还可以截获 A 的 IP 地址,然后把 A 的 IP 地址冒充为自己的 IP 地址(这叫作 IP欺骗),使 B 更加容易受骗。//通信实体被中途替换了

        那么如何应对,重放攻击呢?

        为了对付重放攻击,可以使用 不重数(nonce)。不重数就是一个不重复使用的大随机数,即“一次一数”。在鉴别过程中不重数可以使 B 能够把重复的鉴别请求和新的鉴别请求区分开。

        在上图中,A 首先用明文发送其身份 A 和一个不重数 R_{A} 给 B。接着,B 响应 A 的查问,用共享的密钥 K_{AB} 对 R_{A} 加密后发回给 A,同时也给出了自己的不重数 R_{B}。最后,A 再响应 B 的查问,用共享的密钥 K_{AB} 对 R_{B} 加密后发回给 B。这里很重要的一点是 A 和 B 对不同的会话必须使用不同的不重数集。由于不重数不能重复使用,所以 C 在进行重放攻击时无法重复使用所截获的不重数。//即使C截获了之前的通信内容,也无法直接将其重放来冒充合法用户,所以,不重数的主要作用是使重放记录无法通过完整性检查

        在使用公钥密码体制时,可以对不重数进行签名鉴别。例如,B 用其私钥对不重数 R_{A} 进行签名后发回给 A。A 用 B 的公钥核实签名,如能得出自己原来发送的不重数 R_{A},就核实了和自己通信的对方的确是 B。同样,A 也用自己的私钥对不重数 R_{B} 进行签名后发送给 B。B 用 A 的公钥核实签名,鉴别了 A 的身份。//保证不重数不被篡改

        至此,全文结束。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/2620.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微博评论爬取

import requests import csv# 打开CSV文件以写入数据 f open(data.csv, modea, encodingutf-8-sig, newline) csv_writer csv.DictWriter(f, fieldnames[昵称, 性别, 归属地, 内容]) csv_writer.writeheader()# 定义一个函数用于获取评论内容 def GetContent(max_id):# 设置请…

【Harmony3.1/4.0】笔记五

概念 本文综合row,column作为主要布局,结合image组件,text组件,textimput组件,button组件以及轮播布局搭建登录页面 效果图 ArkTS代码 //登录综合页面 Entry Component struct Five{//添加图片State imgs:Resource[…

企业有哪些常见网络需求场景?

企业的网络场景需求多种多样,主要取决于其业务规模、运营模式、技术应用等因素。 常见的企业网络场景需求 办公网络需求: 高速稳定的内部网络连接,以支持员工日常办公、数据传输和资源共享。 无线办公网络覆盖,以便员工在会议室…

【LeetCode刷题记录】19. 删除链表的倒数第 N 个结点

19 删除链表的倒数第 N 个结点 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head [1,2,3,4,5], n 2 输出:[1,2,3,5] 示例 2: 输入:head [1], n 1 输出…

大模型的实践应用22-谷歌Gemma AI大模型的架构原理,以及Gemma模型的部署安装本地教程

大家好,我是微学AI,今天给大家介绍一下大模型的实践应用22-谷歌Gemma AI大模型的架构原理,以及Gemma模型的部署安装本地教程。谷歌Gemma AI大模型是由Google AI团队开发并开源。Gemma模型采用Transformer编码器-解码器架构,并加入了一些改进,例如使用稀疏注意力机制来提高推…

世媒讯提供海内外媒体宣发服务,引领企业新媒体发展之路

在这个信息化的时代,软文发稿已经成为企业发展不可或缺的重要工具。随着社会的快速发展,消费者需要更多定制化、个性化的信息。利用软性推广,凭借其细致入微的信息传递,可以迅速抓住消费者的注意力,从而进一步推动企业…

“五之链”第十六期沙龙活动在呆马科技成功举办

2024年4月19日,由临沂呆码区块链网络科技有限公司(呆马科技)承办的第十六期“五之链”物流主题沙龙活动成功举办。此次活动邀请了政府相关部门、知名科研院所、物流企业等20余家单位参与,共同探讨物流数据要素流通与智能应用的发展…

使用prompt_toolkit构建交互式命令行工具

prompt_toolkit是一个python库,用于构建命令行工具和终端应用。其官网介绍如下, prompt_toolkit is a library for building powerful interactive command line and terminal applications in Python. 安装命令如下, pip install prompt_to…

朴素贝叶斯算法分类

def loadDataSet():postingList[[my, dog, has, flea, problems, help, please], #切分的词条[maybe, not, take, him, to, dog, park, stupid],[my, dalmation, is, so, cute, I, love, him],[stop, posting, stupid, worthless, garbage],[mr, licks, ate, my, steak, …

HarmonyOS开发案例:【相机开发】

基本概念 相机是OpenHarmony多媒体进程提供的服务之一,提供了相机的录像、预览、拍照功能,支持多用户并发取流。 在进行应用的开发前,开发者应了解以下基本概念: 视频帧 视频流指的是将一系列图片数据按照固定时间间隔排列形成的…

2024新算法爱情进化算法(LEA)和经典灰狼优化器(GWO)进行无人机三维路径规划设计实验

简介: 2024新算法爱情进化算法(LEA)和经典灰狼优化器(GWO)进行无人机三维路径规划设计实验。 无人机三维路径规划的重要意义在于确保飞行安全、优化飞行路线以节省时间和能源消耗,并使无人机能够适应复杂环…

Leetcode 第 393 场周赛题解

Leetcode 第 393 场周赛题解 Leetcode 第 393 场周赛题解题目1:3114. 替换字符可以得到的最晚时间思路代码复杂度分析 题目2:3115. 质数的最大距离思路代码复杂度分析 题目3:3116. 单面值组合的第 K 小金额思路代码复杂度分析 题目4&#xff…

使用BibTeX导入参考文献到Overleaf项目(常用方法)

使用bib为overleaf导入参考文献的好处 整洁的管理: 使用 .bib 文件可以使你的参考文献管理更加整洁和有条理。你可以将所有的参考文献集中存储在一个文件中,而不是在文档中直接引用或复制粘贴。 易于维护和更新: 当你需要添加、删除或修改参考…

申请泛域名证书步骤

泛域名证书的广泛应用范围: 泛域名证书不同于普通的单域名数字证书和多域名数字证书,可以一次以一张证书对应无限多的域名,在功能性和方便性上远优于一般证书。 单域名证书顾名思义,一张证书只对应一个独立域名,多域…

迅睿CMS内容删除后ID重置与指定起始值操作指南

在使用迅睿CMS进行内容管理时,经常会涉及到内容的增删改查。本文将介绍如何在删除内容后重置ID值,或指定ID值从某一特定数开始自增,以便于更好的管理数据。 ID重置操作 共享模块ID重置 在执行删除操作时,若需要对共享模块的内容…

Unity类银河恶魔城学习记录13-4 p145 Save Skill Tree源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili GameData.cs using System.Collections; using System.Collections.Generic…

投票刷礼物链接怎么弄?最新投票活动创建系统源码 轻松创建活动

投票刷礼物链接怎么弄?投票活动创建系统的作用和功能多种多样,为用户提供一个便捷、高效且功能强大的平台,用于创建、管理和执行各种投票活动。分享一个最新投票活动创建系统源码,源码开源可二开,含完整代码包和详细搭…

【机器学习书籍推荐】机器学习算法原理与编程实践(附PDF)

哈喽啊大家&#xff0c;今天又来给大家推荐一本机器学习方面的书籍<机器学习算法原理与编程实践>。本书适用于中高水平的程序设计人员、大学理科生、以及对机器学习感兴趣的各类爱好者。 《机器学习算法原理与编程实践》围绕神经网络、智能推理、矩阵计算三大主线&#…

BM25检索算法 python

1.简介 BM25&#xff08;Best Matching 25&#xff09;是一种经典的信息检索算法&#xff0c;是基于 TF-IDF算法的改进版本&#xff0c;旨在解决、TF-IDF算法的一些不足之处。其被广泛应用于信息检索领域的排名函数&#xff0c;用于估计文档D与用户查询Q之间的相关性。它是一种…

【树莓派学习】开发环境配置

【树莓派学习】开发环境配置 ​ Raspberry Pi OS作为基于Linux的系统&#xff0c;其默认网络配置在国内的网络环境下容易出现访问慢甚至无法连接等问题&#xff0c;不便于我们的学习&#xff0c;同时&#xff0c;树莓派上C/C的使用需要单独安装WiringPi。本文主要介绍如何更改…