数据挖掘丨轻松应用RapidMiner机器学习内置数据分析案例模板详解(上篇)

RapidMiner 案例模板

RapidMiner 机器学习平台提供了一个可视化的操作界面,允许用户通过拖放的方式构建数据分析流程。

RapidMiner目前内置了 13 种案例模板,这些模板是预定义的数据分析流程,可以帮助用户快速启动和执行常见的数据分析任务。在本期文章中,我们选取了其中6种内置模板的详细步骤,为大家进行逐一介绍,案例模板包含:客户流失分析、精准营销、信用风险、购物篮分析、预测性维护、价格风险聚类。

图片

案例模板界面

*如内置模板不能满足用户的场景,用户也可以使用模型流程设计器构建自己的模型流程。

1、客户流失分析

流失模型是电信行业用于预测客户流失的重要分析工具,通过分析客户行为和历史数据,帮助企业识别流失风险,制定策略以减少客户流失率,保持业务稳定增长。

图片

步骤 1:

加载一个客户数据集,该数据集包含如下客户属性:

  • 年龄

  • 使用的技术(4G、光纤等)

  • 成为客户的时间

  • 去年的平均账单金额

  • 支持电话的数量

  • 去年是否放弃服务?

步骤 2:

编辑、转换和学习(ETL)以及准备数据:标记目标标签列(即流失指标),并将数值型流失列转换为二进制。

步骤 3:

模型验证至关重要!交叉验证将数据集分割为训练集,然后是独立的测试集。这种分割多次进行,以获得更好的性能估计。

2、精准营销

营销策略通过分析历史数据,建立客户响应模型,预测潜在反应者,旨在提升新营销活动的转化率。

图片

步骤 1:

加载并准备过去市场营销活动的数据,包括接收者的属性(例如年龄、性别、地区)和行为属性(产品与服务的使用情况、网站等)。

步骤 2:

确定哪些因素影响对市场营销活动的反应,以提高预测的准确性。

步骤 3:

训练并验证客户反应模型。

步骤 4:

加载包含新营销活动潜在接收者的数据。应用客户反应模型来识别并触达那些最有可能以期望方式响应营销活动的接收者。

步骤 5:

通常,忽略会响应的接收者比向不响应的人发送活动的成本更高。考虑这些成本,计算并应用最优的置信度阈值。

3、信用风险

信用风险建模利用支持向量机(SVM)模型,通过训练模型并调整参数C和gamma来预测信用违约风险,进而对新数据进行风险评分。

步骤 1:

加载对手方风险数据,其中包含公司属性和过去的违约观察记录。对于那些缺少违约观察记录的公司,应该预测其违约风险。

步骤 2:

编辑、转换和加载(ETL)- 将数据分为两组:一组包含标签值的行,另一组标签值缺失的行。包含标签的行用于训练一个模型,该模型应预测没有标签的行的违约风险。

步骤 3:

训练并优化支持向量机(SVM)模型以预测信用风险。这个优化操作器会变化SVM的重要参数C和gamma,以返回具有最大预测准确性的模型。

4、购物篮分析

购物篮分析通过分析商品组合购买模式,构建关联规则,以生成产品推荐,帮助商家优化库存和促销策略。

图片

步骤 1:

加载交易数据,其中包含交易ID、产品ID和一个数量指标。这些数据表示作为交易一部分的特定产品被购买了多少次。

步骤 2:

编辑、转换和加载(ETL)- 通过连接聚合交易数据,以便交易中的产品在一个条目中。

步骤 3:

使用FP-Growth算法确定频繁项集。频繁项集指的是集合中的物品(产品)经常一起被购买,即在一定比例的交易中出现。这个比例由项集的支持度(support)给出。

步骤 4:

创建关联规则,这些规则可以根据规则的置信度用于产品推荐。

5、预测性维护

预测性维护根据过去机器运行和故障的观察数据来建模设备故障。将模型应用于当前情况,以预测机器故障并预先安排维护。

图片

步骤1:

加载过去机器运行的数据,这些数据被标记了是否有故障发生的信息。

步骤2:

使用各种属性加权算法确定影响因素,并将它们的权重结果进行平均。

步骤3:

训练一个k-最近邻(k-NN)模型——优化k值(考虑用于预测的参考情况数量),以实现最大的故障预测准确性。

步骤4:

加载新数据,并将机器故障模型应用于当前机器运行,以预测潜在的机器故障。

6、价格风险聚类分析

价格风险聚类模型通过标准化处理时间序列数据,并应用X-Means算法进行聚类分析,以识别和理解股票价格之间的风险关联。

图片

步骤1:

加载德国DAX 30股票的价格数据。将日期列设置为角色ID。

步骤2:

对每个价格时间序列进行标准化,即对值进行Z变换,使得变换后的平均值为0,标准差为1。

步骤3:

转置数据集(使每个时间序列现在成为一行),并对数据进行聚类,使得每个序列归入一个聚类中。


若您对数据分析以及人工智能感兴趣,欢迎与我们一起站在全球视野关注人工智能的发展,与Forrester 、德勤、麦肯锡等全球知名企业共探AI如何加速制造进程,

共同参与6月20日由Altair主办的面向工程师的全球线上人工智能会议“AI for Engineers”。

点击立即免费报名

(注:现在注册参会,即可于会后第一时间获得Altair全球100个客户案例资料)


关于 Altair RapidMiner

Altair RapidMiner 数据分析与人工智能平台,是 Altair 澳汰尔公司旗下仿真、HPC 和数据分析三块主营业务中的解决方案,它在数据分析领域最早实现将自动化数据科学、文本分析、自动特征工程和深度学习等多种功能同时集成的一站式数据分析平台,帮助用户解决从数据清洗、准备、数据科学建模到模型管理和部署,同时又支持数据和流数据的实时分析可视化的数据分析平台。

欲了解更多信息,欢迎访问:www.altair.com.cn​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/26092.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Zabbix6.0自动发现Linux服务器并添加主机

文章目录 一、整体流程二、操作过程 一、整体流程 Zabbix自动发现主机功能是Zabbix监控系统的一个重要功能,它能够自动发现并添加新的主机到监控系统中,从而减少人为繁琐的操作! 步骤操作1️⃣ 第一步创建自动发现规则2️⃣ ​第二步创建自…

安卓事件交互(按键事件、触摸事件、手势识别、手势冲突处理)

本章介绍App开发常见的以下事件交互技术,主要包括:如何检测并接管按键事件,如何对触摸事件进行分发、拦截与处理,如何根据触摸行为辨别几种手势动作,如何正确避免手势冲突的意外状况。 按键事件 本节介绍App开发对按…

[qt] qt程序打包以及docker镜像打包

目录 一 环境准备: 1.1 qt环境 1.2 linuxdeplouqt打包工具 二 qt包发布: 2.1 搜索链接库 2.2 应用程序APP打包 2.3 发布 三 docker镜像包发布 3.1 环境准备 3.2 镜像生产脚本 3.3 加载镜像并运行docker容器 一 环境准备: qt环境linuxdeployqt打包工具docker环境 1…

demo xshell (程序替换 工作目录 内建命令)

1.程序替换 在学习完一些列的进程替换接口之后我们大概就能知道,我们的环境变量以及命令行参数是如何传递给子进程的,这些参数是我们在调用进程替换时就传给了子进程的数据。 那么如果我们自己要实现一个简单的命令行解释器,我们是不是首先…

stm32MP135裸机编程:使用USB/UART烧录程序到SD卡并从SD卡启动点亮一颗LED灯

0 参考资料 轻松使用STM32MP13x - 如MCU般在cortex A核上裸跑应用程序.pdf STM32CubeProgrammer v2.16.0 烧录需要的二进制文件1 烧录到SD卡需要哪些文件 参考《轻松使用STM32MP13x - 如MCU般在cortex A核上裸跑应用程序》,烧录需要的SD卡文件如下: &a…

教育的数字化转型——Kompas.ai如何变革学习体验

引言 在现代教育中,数字化转型逐渐成为提升学习效果的重要手段。随着科技的进步,人工智能(AI)在教育领域的应用越来越广泛。本文将探讨教育数字化转型的发展趋势,并介绍Kompas.ai如何通过AI技术变革学习体验。 教育数…

LNMP配置

文章目录 一、相关概念CGI的由来FastCGIPHP-FPM 二、编译安装编译安装nginxyum安装mysql编译安装php配置nginx支持php解析增加数据库安装论坛 一、相关概念 CGI的由来 最早的Web服务器只能简单地响应浏览器发来的HTTP请求,并将存储在服务器上的HTML文件返回给浏览器…

gdb 【Linux】

程序发布方式:  1、debug版本:程序会被加入调试信息,以便于进行调试。  2、release版本:不添加任何调试信息,是不可调试   确定一个可执行程序是debug,还是release [cxqiZ7xviiy0goapxtblgih6oZ test_g…

python科研做图系列之时序图的绘制——对比折线图

参考知乎 折线图 我需要从两个不同的excel都读取第一列作为时间列,第二列作为编码列。 在同一张图上画出两条时间序列的折线图 横坐标是分钟,纵坐标是编码 帮我画的好看一些,记得解决中文乱码问题 英文版折线图 ,先搞个英文版,导师要求中文的话,再换成中文版 impor…

[Algorithm][动态规划][完全背包问题][零钱兑换][零钱兑换Ⅱ][完全平方数]详细讲解

目录 1.零钱兑换1.题目链接2.算法原理详解3.代码实现 2.零钱兑换 II1.题目链接2.算法原理详解3.代码实现 3.完全平方数1.题目链接2.算法原理详解3.代码实现 1.零钱兑换 1.题目链接 零钱兑换 2.算法原理详解 思路: 确定状态表示 -> dp[i][j]的含义 dp[i][j]&am…

QSqlDatabase、QSqlQuery、QSqlRecord、Sqlite用法

使用QSqlDatabase、QSqlQuery、QSqlRecord、Sqlite数据库实现一个简单的界面查询 1. 创建Sqlite数据库,表 mainwindow.cpp #include "mainwindow.h" #include "ui_mainwindow.h" #include "QSqlDatabase" #include "QSqlQuery&q…

【计算机毕业设计】273基于微信小程序的刷题系统

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

MySQL8基于GTID以及VIP实现高可用主从架构

jdbc客户端配置高可用以及故障切换 jdbc客户端实现故障切换 MySQL Connector/J 支持服务器故障转移。当底层活动连接发生与连接相关的错误时,就会发生故障转移 参考官网地址 jdbc:mysql://[primary host][:port],[secondary host 1][:port] jdbc客户端实现故障切…

vAttention:用于在没有Paged Attention的情况下Serving LLM

文章目录 0x0. 前言(太长不看版)0x1. 摘要0x2. 介绍&背景0x3. 使用PagedAttention模型的问题0x3.1 需要重写注意力kernel0x3.2 在服务框架中增加冗余0x3.3 性能开销0x3.3.1 GPU上的运行时开销0x3.3.2 CPU上的运行时开销 0x4. 对LLM服务系统的洞察0x5…

自动驾驶跟驰仿真

联合仿真需求分析报告 一、项目背景 随着汽车技术的快速发展,自动驾驶和智能网联汽车已成为行业发展的重要趋势。为确保自动驾驶车辆在复杂交通环境中的安全性和可靠性,进行联合仿真测试显得尤为重要。本报告旨在明确联合仿真的具体需求,为…

Springboot结合redis实现关注推送

关注推送 Feed流的模式 Timeline:不做内容筛选,简单的按照内容发布时间排序。常用于好友与关注。例如朋友圈的时间发布排序。 优点:信息全面,不会有缺失。并且实现也相对简单 缺点:信息噪音较多,用户不一定感兴趣,内容获取效率…

佳能5DMARK IV mov视频覆盖的恢复方法

5DMARK IV算是佳能比较经典的一款摄像机,是佳能早期使用MOV的摄像机之一,MOV是当初佳能高端机的象征,当然现在佳能已经不在通过MOV和MP4来区分硬件级别了。下边这个案例是文件拍摄时断电,结果变成0字节,然后覆盖了部分…

速度位置规划实现精确定位的问题

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…

论文略读:Onthe Expressivity Role of LayerNorm in Transformers’ Attention

ACL 2023 研究了LayerNorm在 Transformers 中对注意力的作用LayerNorm为Transformer的Attention提供了两个重要的功能: 投影,projection LayerNorm 帮助 Attention 设计一个注意力查询,这样所有的Key都可以平等地访问通过将Key向量投影到同一…

端午节到了,祝大家粽子甜甜,生活美满!愿粉丝们心想事成,健康平安,阖家幸福!

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …