用于认知负荷评估的集成时空深度聚类(ISTDC)

Integrated Spatio-Temporal Deep Clustering (ISTDC) for cognitive workload assessment

摘要:

本文提出了一种新型的集成时空深度聚类(ISTDC)模型,用于评估认知负荷。该模型首先利用深度表示学习(DRL)将高维EEG数据转换到低维特征空间,然后应用变分贝叶斯高斯混合模型(VBGMM)进行聚类分析。ISTDC模型通过四个算法实现,包括时间-空间变分自编码器(VAE)和多模态集成,有效地从EEG信号中提取时间与空间的潜在特征。在i-back任务中,所提出的模型在0-back与2-back任务对比中达到了98.0%的最大平均聚类准确率,相较于现有方法有显著提升。此外,多模态方法在工作量评估方面优于单模态模型。

引言:

引言部分定义了认知负荷作为一个多维构造,并讨论了使用主观或生理测量方法来评估操作者的工作量水平。由于基于生理信号的客观测量至关重要,EEG作为最有效的生理测量手段被广泛用于认知应用。然而,传统的基于EEG的特征(如功率谱密度PSD或事件相关电位ERP)并不总能在认知负荷估计中取得满意结果。因此,本文提出了一种新的深度学习方法,通过深度表示学习将EEG数据转换到更易于聚类的低维特征空间。

文章贡献

  • 提出了一个新颖的ISTDC框架,该框架由四个算法组成,后接深度聚类方法,有效利用结合的时间和空间深度潜在特征来分类工作量水平。
  • 在0-back与2-back任务对比中,所提出的模型达到了最高的分类准确率,并且与基于单模态VAE的聚类方法相比,分别提高了15.8%和13.7%的性能。
  • 通过不同种类的比较研究,证明了所提出模型在所有比较中的效率有显著提高。
    这些贡献展示了ISTDC模型在认知负荷评估方面的潜力,特别是在提高聚类准确性和多模态数据处理方面。
    在这里插入图片描述

算法框架

  • 时间-空间特征提取:

    利用变分自编码器(VAE)来提取EEG信号的时间和空间特征。时间特征通过长短期记忆网络(LSTM)模型提取,而空间特征则通过卷积神经网络(CNN)模型提取。

  • 深度表示学习(DRL):

    通过DRL技术,将高维EEG数据映射到低维特征空间,以便于后续的聚类分析。

  • 特征融合:

    将提取的时间和空间特征进行融合,形成一个综合的特征向量,这个向量包含了原始EEG信号的多维度信息。

  • 变分贝叶斯高斯混合模型(VBGMM):

    使用VBGMM作为聚类算法,对融合后的特征向量进行聚类分析,以识别不同的认知负荷水平。

方法部分

介绍了Integrated Spatio-Temporal Deep Clustering (ISTDC)模型的构建和实现方式,包括数据集的选择、实验设计、深度学习模型的架构和认知负荷估计的聚类方法。以下是方法部分的主要内容概述:

  • 数据集和实验分析:

    使用了一个包含26名受试者(9名男性和17名女性)的公开可访问EEG数据集。
    数据集记录了30个EEG电极的信号,采样率为1000 Hz,并进行了1-40 Hz的带通滤波处理。
    应用独立成分分析(ICA)去除眼动和心电等伪迹。

  • 集成时空变分自编码器(IST-VAE)模型:

    介绍了深度表示学习方法(DRL),用于将高维输入数据映射到低维嵌入特征空间。
    利用变分自编码器(VAE)来克服自动编码器(AE)的过拟合问题,通过正则化潜在变量。
    描述了用于构建IST-VAE模型的四个算法,包括编码过程、时间VAE、空间VAE和多模态集成。

  • 认知负荷估计使用变分贝叶斯高斯混合模型(VBGMM):

    详细描述了VBGMM聚类方法,这是一种基于变分推断算法的方法,用于在保留贝叶斯方法优势的同时确定近似后验分布。
    讨论了VBGMM的两个关键参数:先验类型(狄利克雷过程或狄利克雷分布)和权重浓度先验,后者基于先验类型确定每个组件的权重分布。

  • 实验设计:

    描述了i-back任务的实验设计,包括0-back、2-back和3-back任务,以及实验中每个任务的执行流程和持续时间。

  • 模型训练和优化:

    讨论了模型训练过程中使用的不同优化器和学习率,以及如何使用随机搜索方法来调整超参数。

  • 模型评估:

    介绍了用于评估VBGMM聚类性能的三个指标:无监督聚类准确率(Acc)、归一化互信息(NMI)和Rand指数(RI)。

  • 计算复杂性分析:

    对模型的计算复杂性进行了讨论,包括LSTM和CNN模型的时间复杂度,以及VBGMM聚类算法的复杂度。
    在这里插入图片描述
    在这里插入图片描述

结论

本文提出了一种创新的Integrated Spatio-Temporal Deep Clustering (ISTDC)框架,通过融合电生理信号的时空特征,并应用变分贝叶斯高斯混合模型(VBGMM)进行聚类分析,有效提升了认知负荷评估的准确性。实验结果表明,该模型在0-back与2-back任务对比中实现了98.0%的高平均聚类准确率,并在个别受试者上达到了99.2%的准确率。此外,模型在不同数据集上展现出良好的泛化能力,相较于传统方法和其他深度学习模型,显示出显著的性能优势。未来的工作将探索集成更多生理信号,如近红外光谱(NIRS),以进一步提高模型的评估性能。

应用点

聚类在图像语义分割中的应用是将图像的每个像素或区域根据其特征自动划分到不同的类别中,从而实现对图像结构的理解和描述。通过使用不同的聚类算法,如K-means、谱聚类或基于密度的DBSCAN,可以从原始像素值或通过深度学习模型提取的高级特征中学习数据的内在结构。这些算法将图像的像素分组,以便每个组内的像素在视觉上或在特征空间中是相似的,而组与组之间则有明显的差异。聚类结果可以用于生成更加精细和准确的分割,尤其是在处理复杂场景或缺少大量标注数据的情况中。此外,聚类技术可以与监督学习方法结合使用,形成半监督学习框架,以提高分割精度并减少对大量标注数据的依赖。最终,聚类在图像语义分割中的应用有助于自动化和改善计算机视觉系统在场景理解、对象识别和自动驾驶等领域的性能。

聚类在语义语义分割中的应用

  • 特征提取:

    首先,需要从图像中提取有用的特征。这些特征可以是像素级的颜色、纹理、位置信息,或者是通过深度学习模型(如卷积神经网络CNN)提取的高级特征。

  • 无监督学习:

    聚类是一种无监督学习方法,可以在没有标签指导的情况下对数据进行分组。在图像语义分割中,可以将图像的每个像素或小区域视为数据点,并应用聚类算法来识别图像中不同的区域或对象。

  • 选择聚类算法:

    根据任务的具体需求选择合适的聚类算法,如K-means、谱聚类、层次聚类、基于密度的聚类(如DBSCAN)或变分贝叶斯聚类等。

  • 应用聚类算法:

    将聚类算法应用于提取的特征上,以将图像分割成多个区域或对象。每个聚类代表图像中的一个语义上一致的区域。

  • 后处理:

    聚类结果可能需要后处理步骤来优化分割效果,例如通过形态学操作来消除小的、孤立的区域,或通过条件随机场(CRF)来细化边界。

  • 评估:

    使用像素准确率、交并比(IoU)、平均精度等指标来评估聚类结果的质量。

  • 集成学习:

    在某些情况下,可以结合多个聚类模型的输出,通过集成学习方法来提高分割的准确性和鲁棒性。

  • 半监督学习:

    如果有少量的标注数据可用,可以结合无监督聚类和监督学习,使用半监督方法来提高分割性能。

  • 多尺度聚类:

    在不同尺度上应用聚类算法,可以帮助识别不同大小的对象,提高分割的准确性。

  • 多模态特征融合:

    如果有多种类型的数据可用(例如,彩色图像、深度图像、红外图像),可以融合这些数据的特征来进行更准确的聚类和分割。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/24910.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人工智能在【肿瘤生物标志物】领域的最新研究进展|顶刊速递·24-06-08

小罗碎碎念 本期文献速递的主题是——人工智能在“肿瘤生物标志物”领域的最新研究进展。 重点关注 今天推荐的6篇文献中,第二篇和第三篇是小罗最喜欢的,因为对于临床来说,比较具有实际意义,也和自己的想法很契合。 尤其是第三篇…

每日一题——Python实现PAT甲级1015 Reversible Primes(举一反三+思想解读+逐步优化)

一个认为一切根源都是“自己不够强”的INTJ 个人主页:用哲学编程-CSDN博客专栏:每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法 is_prime函数分析: decimal_to_base函数分析: 主循…

Shell脚本学习_环境变量深入

目录 1.Shell环境变量深入:自定义系统环境变量 2.Shell环境变量深入:加载流程原理介绍 3.Shell环境变量深入:加载流程测试 4.Shell环境变量深入:识别与切换Shell环境类型 1.Shell环境变量深入:自定义系统环境变量 …

旧衣回收小程序开发,轻松回收旧衣物

随着环保理念的增强,回收市场得到了快速发展,吸引了不少年轻人进入到市场中创业。除了传统的废品回收外,旧衣回收也受到了大众的重视,市场规模迅速扩大,大众浪费的衣物也获得了归处。 目前旧衣回收的方式主要是线上与…

makefile与进度条

Linux项目自动化构建工具-make/makefile make是一个命令, makefile是一个文件,保存依赖关系和依赖方法。‘ touch Makefile/makefile mybin:mytest.c//依赖关系 目标文件:依赖文件列表 文件列表的文件之间以空格分隔 gcc -o mybin mytest.…

Shell脚本学习_字符串变量

目录 1.Shell字符串变量:格式介绍 2.Shell字符串变量:拼接 3.Shell字符串变量:字符串截取 4.Shell索引数组变量:定义-获取-拼接-删除 1.Shell字符串变量:格式介绍 1、目标: 能够使用字符串的三种方式 …

linux系统——ping命令

ping命令可以用来判断对远端ip的连通性,可以加域名也可以加公共ip地址 这里发送出56字节,返回64字节

ctfshow-web入门-命令执行(web41_exp与分析)

过滤不严,命令执行 preg_match(/[0-9]|[a-z]|\^|\|\~|\$|\[|\]|\{|\}|\&|\-/i, $c) 过滤掉了数字、字母以及一些符号,之前接触过的无字母 rce 是取反编码再取反,采用不可见字符去绕过正则,但是这里取反符号被过滤掉了&#x…

Kali linux学习入门

Kali linux学习入门 文章目录 Kali linux学习入门Kali Linux简介Kali Linux工具篇Kali Docker安装Docker 更换国内镜像源Kali 安装 docker compose Kali Linux文档篇Kali Linux 社区篇 Kali Linux简介 Kali Linux是专门用于渗透测试linux操作系统,它由BackTrack发展…

软件游戏找不到d3dx9_43.dll怎么办,三分钟教你解决此问题

在现代科技发展的时代,电脑已经成为我们生活中不可或缺的一部分。然而,在使用电脑的过程中,我们可能会遇到一些问题,其中之一就是电脑缺失d3dx943.dll文件。这个问题可能会影响到我们的正常使用,因此了解其原因和解决方…

接口(API)开发,测试工具-apifox

前言 为什么需要接口(API)? 因为不同的平台或系统可能使用不同的技术栈、编程语言或数据格式。API提供了一个标准化的方式,使得这些不同的系统可以相互交换数据和功能调用,实现互操作性 在开发日常的项目交互中,不…

PyCharm中 Fitten Code插件的使用说明一

一. 简介 Fitten Code插件是是一款由非十大模型驱动的 AI 编程助手,它可以自动生成代码,提升开发效率,帮您调试 Bug,节省您的时间,另外还可以对话聊天,解决您编程碰到的问题。 前一篇文章学习了 PyCharm…

小白教程--- kali(po解)WIFI密码 (图文教程)

kali学得好,牢饭少不了!!! 原理: 模拟WiFi的已连接设备,强制让其下线重连,获取其握手包,使用密码字典(宝丽)婆洁。 环境(准备工作)&a…

深度解析:ChatGPT全面测评——功能、性能与用户体验全景剖析

从去年底至今,由 OpenAI 发布的大规模语言模型 ChatGPT 引发了几乎所有科技领域从业者的高度关注。据瑞银集团的报告显示,自 2023 年 1 月起,仅两个月内,ChatGPT 的月活用户数便超过了 1 亿。 ChatGPT 被誉为“最强 AI”&#xff…

操作系统总结

进程和线程的区别 本质区别: 进程是资源调度以及分配的基本单位。线程是 CPU 调度的基本单位。 所属关系:一个线程属于一个进程,一个进程可以拥有多个线程。地址空间: 进程有独立的虚拟地址空间。线程没有独立的虚拟地址空间&…

Day53 动态规划part12

LC309买卖股票的最佳时机含冷冻期 与LC122类似,都是可无限次购买股票,只不过引入了冷冻期的概念dp[i][0] 第i天持有股票收益;dp[i][1] 第i天不持有股票收益;情况一:第i天是冷静期,不能以dp[i-1][1]购买股票,所以以dp[…

性能测试 —— Jmeter对数据库压力测试

Jmeter先要和数据库建立连接,sql语句是在Jmeter中写的,但是语句的执行是在数据库里执行的,数据库再将执行结果返回给Jmeter。 在做jmeter数据库压力测试之前,要先检查是否有mysql-connector-java-5.1.39-bin.jar的这个包&#xf…

flink读取hive写入http接口

目录 0、创建hive数据 1、pom.xml 2、flink代码 3、sink 4、提交任务jar 5、flink-conf.yaml 6、数据接收 flink-1.17.2jdk1.8hive-3.1.3hadoop3.3.6passwordhttp0、创建hive数据 /cluster/hive/bin/beeline !connect jdbc:hive2://ip:10000 create database demo; d…

python 多任务之多进程

多任务 优势 多个任务同时执行可以大大提高程序执行效率,可以充分利用CPU资源,提高程序的执行效率 概念 是指在同一时间内执行多个任务 多进程 概念 进程(process)是资源分配的最小单位,他是操作系统进行资源分配…

鸿蒙北向开发 IDE DevEco Studio 3.1 傻瓜式安装闭坑指南

首先下载 安装IDE 本体程序 DevEco Studio 下载链接 当前最新版本是3.1.1,下载windows版本的 下载下来后是一个压缩包, 解压解锁包后会出现一个exe安装程序 双击运行安装程序 一路 next ( 这里涉及安装文件目录,我因为C盘够大所以全部默认了,各位根据自己情况选择自己的文件…