文章目录
- 一. 红黑树规则
- 二. 情况一叔叔存在且为红
- 情况二.变色+旋旋
一. 红黑树规则
对于红黑树,进行变色+旋转处理,终究都是为了维持颜色+以下几条规则,只有颜色和规则维持住了,红黑树就维持住了最长路径的长度不超过最短路径的两倍。
规则:
- 根是黑的。
- 没有连续的红节点。
- 每条路径的黑色数量相等。
二. 情况一叔叔存在且为红
注意点:红黑树插入的节点都是红色的,因为在红黑树中动黑色节点是非常忌讳的,因为要维持每条路径黑色数量相等非常困难,所以插入的节点默认都是红色的。
当插入红色节点后:1.如果父亲为黑或者父亲不存在,结束,不需要任何处理。
2. 如果父亲存在且为红,由于插入节点为红,存在连续红节点,需要处理,可以肯定的是爷爷一定是黑,因为插入节点前就是一棵红黑树了,既然父亲和爷爷颜色确定,主要看叔叔。
1.叔叔存在且为红
情况二.变色+旋旋
叔叔存在且为黑或者叔叔不存在都需变色+旋转,关键分析是左单旋,右单旋,还是左右双旋,还是右左双旋只要旋转后,就平衡了,直接结束,不需要向上更新
1. 变色+单旋
对于叔叔存在且为黑或不存在这种情况,不可能是因为直接插入红色节点导致连续红这种情况直接发生的,因为这发生了,原本就不是红黑树,一定是由上述图一第一种情况处理更新上来导致的。
解决办法:curp->left, pg->left 左左右单旋g点+
p变黑,g变红。
同理:如果上述情况curp->right, pg->right,右右左单旋g点+p变黑,g变红
2.变色+双旋
对于这种情况:curp->right, pg->left,左右双旋,
将p左旋,g右旋,+ cur变黑+g变红。
同理:curp->left, pg->right, 右左双旋,将p右旋,g左旋,+cur变黑+g变红
总结单纯变色处理,需要不停向上更新至父亲不存在或者父亲为黑结束,旋转+变色处理完就平衡了直接结束。
一下是代码实现
bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK; //根为黑色return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//父亲存在且为红,连续红节点,处理(如果父亲不存在管你红黑就结束了,如果为黑也结束了)while (parent && parent->_col == RED){Node* grandfather = parent->_parent; //算出爷爷,根据父亲为爷爷的左右,确定叔叔if (parent == grandfather->_left){Node* uncle = grandfather->_right;//情况一:叔叔存在且为红 变色处理if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//根节点保证为黑下面处理//继续往上处理cur = grandfather;parent = cur->_parent;}//情况二:叔叔不存在/叔叔存在且为黑else{//需要判别单旋还是左旋,确定cur的位置//旋转+变色if (cur == parent->_left){// g// p u//c//左左右单旋RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// p u// c//左右双旋+变色RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break; //只要旋转结束就平衡了结束}}else{Node* uncle = grandfather->_left;//情况一:叔叔存在且为红 变色处理if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//根节点保证为黑下面处理//继续往上处理cur = grandfather;parent = cur->_parent;}//情况二:叔叔不存在/叔叔存在且为黑else{if (cur == parent->_right){// g// u p// cRotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// u p// c//右左双旋RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}//只要旋转完了,就平衡结束了break;}}}_root->_col = BLACK; //变色没有处理根,无论怎么处理都保证根是黑的return true;}void RotateL(Node* parent){++rotateSize;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (parent == ppnode->_left){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){++rotateSize;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (parent == ppnode->_left){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}}
无论怎么方式处理完都需要保证根是黑的,最后加上