AtCoder Regular Contest 179 (ABC题)视频讲解

A - Partition

Problem Statement

You are given integers N N N and K K K.
The cumulative sums of an integer sequence X = ( X 1 , X 2 , … , X N ) X=(X_1,X_2,\dots ,X_N) X=(X1,X2,,XN) of length N N N is defined as a sequence Y = ( Y 0 , Y 1 , … , Y N ) Y=(Y_0,Y_1,\dots ,Y_N) Y=(Y0,Y1,,YN) of length N + 1 N+1 N+1 as follows:
Y 0 = 0 Y_0=0 Y0=0
Y i = ∑ j = 1 i X j ( i = 1 , 2 , … , N ) Y_i=\displaystyle\sum_{j=1}^{i}X_j\ (i=1,2,\dots ,N) Yi=j=1iXj (i=1,2,,N)
An integer sequence X = ( X 1 , X 2 , … , X N ) X=(X_1,X_2,\dots ,X_N) X=(X1,X2,,XN) of length N N N is called a good sequence if and only if it satisfies the following condition:
Any value in the cumulative sums of X X X that is less than K K K appears before any value that is not less than K K K.
Formally, for the cumulative sums Y Y Y of X X X, for any pair of integers ( i , j ) (i,j) (i,j) such that 0 ≤ i , j ≤ N 0 \le i,j \le N 0i,jN, if KaTeX parse error: Expected 'EOF', got '&' at position 6: (Y_i &̲lt; K and Y j ≥ K ) Y_j \ge K) YjK), then KaTeX parse error: Expected 'EOF', got '&' at position 3: i &̲lt; j.
You are given an integer sequence A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\dots ,A_N) A=(A1,A2,,AN) of length N N N. Determine whether the elements of A A A can be rearranged to a good sequence. If so, print one such rearrangement.

Constraints

1 ≤ N ≤ 2 × 1 0 5 1 \leq N \leq 2 \times 10^5 1N2×105
− 1 0 9 ≤ K ≤ 1 0 9 -10^9 \leq K \leq 10^9 109K109
− 1 0 9 ≤ A i ≤ 1 0 9 -10^9 \leq A_i \leq 10^9 109Ai109
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N K K K
A 1 A_1 A1 A 2 A_2 A2 ⋯ \cdots A N A_N AN

Output

If the elements of A A A can be rearranged to a good sequence, print the rearranged sequence ( A 1 ′ , A 2 ′ , … , A N ′ ) (A^{\prime}_1,A^{\prime}_2,\dots ,A^{\prime}_N) (A1,A2,,AN) in the following format:

Yes
A 1 ′ A^{\prime}_1 A1 A 2 ′ A^{\prime}_2 A2 ⋯ \cdots A N ′ A^{\prime}_N AN

If there are multiple valid rearrangements, any of them is considered correct.
If a good sequence cannot be obtained, print No.

Sample Input 1

4 1
-1 2 -3 4

Sample Output 1

Yes
-3 -1 2 4

If you rearrange A A A to ( − 3 , − 1 , 2 , 4 ) (-3,-1,2,4) (3,1,2,4), the cumulative sums Y Y Y in question will be ( 0 , − 3 , − 4 , − 2 , 2 ) (0,-3,-4,-2,2) (0,3,4,2,2). In this Y Y Y, any value less than 1 1 1 appears before any value not less than 1 1 1.

Sample Input 2

4 -1
1 -2 3 -4

Sample Output 2

No

Sample Input 3

10 1000000000
-1000000000 -1000000000 -1000000000 -1000000000 -1000000000 1000000000 1000000000 1000000000 1000000000 1000000000

Sample Output 3

Yes
-1000000000 -1000000000 -1000000000 -1000000000 -1000000000 1000000000 1000000000 1000000000 1000000000 1000000000

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int n, k, sum = 0;cin >> n >> k;std::vector<int> a(n);for (int i = 0; i < n; i ++)cin >> a[i], sum += a[i];if (sum < k	&& k <= 0) {cout << "No" << endl;return 0;}if (k > 0) sort(a.begin(), a.end());else sort(a.begin(), a.end(), greater<int>());cout << "Yes" << endl;for (int i = 0; i < n; i ++)cout << a[i] << " ";cout << endl;return 0;
}

B - Between B and B

Problem Statement

You are given a sequence ( X 1 , X 2 , … , X M ) (X_1, X_2, \dots, X_M) (X1,X2,,XM) of length M M M consisting of integers between 1 1 1 and M M M, inclusive.
Find the number, modulo 998244353 998244353 998244353, of sequences A = ( A 1 , A 2 , … , A N ) A = (A_1, A_2, \dots, A_N) A=(A1,A2,,AN) of length N N N consisting of integers between 1 1 1 and M M M, inclusive, that satisfy the following condition:
For each B = 1 , 2 , … , M B = 1, 2, \dots, M B=1,2,,M, the value X B X_B XB exists between any two different occurrences of B B B in A A A (including both ends).
More formally, for each B = 1 , 2 , … , M B = 1, 2, \dots, M B=1,2,,M, the following condition must hold:
For every pair of integers ( l , r ) (l, r) (l,r) such that KaTeX parse error: Expected 'EOF', got '&' at position 10: 1 \leq l &̲lt; r \leq N and A l = A r = B A_l = A_r = B Al=Ar=B, there exists an integer m m m ( l ≤ m ≤ r l \leq m \leq r lmr) such that A m = X B A_m = X_B Am=XB.

Constraints

1 ≤ M ≤ 10 1 \leq M \leq 10 1M10
1 ≤ N ≤ 1 0 4 1 \leq N \leq 10^4 1N104
1 ≤ X i ≤ M 1 \leq X_i \leq M 1XiM
All input values are integers.

Input

The input is given from Standard Input in the following format:

M M M N N N
X 1 X_1 X1 X 2 X_2 X2 ⋯ \cdots X M X_M XM

Output

Print the answer.

Sample Input 1

3 4
2 1 2

Sample Output 1

14

Here are examples of sequences A A A that satisfy the condition:
( 1 , 3 , 2 , 3 ) (1, 3, 2, 3) (1,3,2,3)
( 2 , 1 , 2 , 1 ) (2, 1, 2, 1) (2,1,2,1)
( 3 , 2 , 1 , 3 ) (3, 2, 1, 3) (3,2,1,3)
Here are non-examples:
( 1 , 3 , 1 , 3 ) (1, 3, 1, 3) (1,3,1,3)
There is no X 3 = 2 X_3 = 2 X3=2 between the 3 3 3s.
( 2 , 2 , 1 , 3 ) (2, 2, 1, 3) (2,2,1,3)
There is no X 2 = 1 X_2 = 1 X2=1 between the 2 2 2s.

Sample Input 2

4 8
1 2 3 4

Sample Output 2

65536

All sequences of length 8 8 8 consisting of integers between 1 1 1 and 4 4 4 satisfy the condition.
Note that when X B = B X_B = B XB=B, there is always a B B B between two different occurrences of B B B.

Sample Input 3

4 9
2 3 4 1

Sample Output 3

628

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 1e4 + 10, M = 11, mod = 998244353;int n, m;
int a[M], f[N][1 << M], mask[M];signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> m >> n;for (int i = 1; i <= m; i ++)cin >> a[i], mask[a[i]] |= 1ll << i - 1;f[0][(1 << m) - 1] = 1;for (int i = 0; i < n; i ++)for (int j = 1; j <= m; j ++)for (int k = 0; k < 1 << m; k ++)if ((k >> j - 1) & 1)f[i + 1][(k ^ (1 << j - 1)) | mask[j]] = (f[i + 1][(k ^ (1 << j - 1)) | mask[j]] + f[i][k]) % mod;int res = 0;for (int i = 0; i < 1 << m; i ++)res = (res + f[n][i]) % mod;cout << res << endl;return 0;
}

C - Beware of Overflow

Problem Statement

This is an interactive problem (where your program interacts with the judge via input and output).
You are given a positive integer N N N.
The judge has a hidden positive integer R R R and N N N integers A 1 , A 2 , … , A N A_1, A_2, \dots, A_N A1,A2,,AN. It is guaranteed that ∣ A i ∣ ≤ R |A_i|\le R AiR and ∣ ∑ i = 1 N A i ∣ ≤ R \left|\displaystyle\sum_{i=1}^{N}A_i\right| \le R i=1NAi R.
There is a blackboard on which you can write integers with absolute values not exceeding R R R. Initially, the blackboard is empty.
The judge has written the values A 1 , A 2 , … , A N A_1, A_2, \dots, A_N A1,A2,,AN on the blackboard in this order. Your task is to make the blackboard contain only one value ∑ i = 1 N A i \displaystyle\sum_{i=1}^{N}A_i i=1NAi.
You cannot learn the values of R R R and A i A_i Ai directly, but you can interact with the judge up to 25000 25000 25000 times.
For a positive integer i i i, let X i X_i Xi be the i i i-th integer written on the blackboard. Specifically, X i = A i X_i = A_i Xi=Ai for i = 1 , 2 , … , N i=1,2,\dots,N i=1,2,,N.
In one interaction, you can specify two distinct positive integers i i i and j j j and choose one of the following actions:
Perform addition. The judge will erase X i X_i Xi and X j X_j Xj from the blackboard and write X i + X j X_i + X_j Xi+Xj on the blackboard.
∣ X i + X j ∣ ≤ R |X_i + X_j| \leq R Xi+XjR must hold.
Perform comparison. The judge will tell you whether KaTeX parse error: Expected 'EOF', got '&' at position 5: X_i &̲lt; X_j is true or false.
Here, at the beginning of each interaction, the i i i-th and j j j-th integers written on the blackboard must not have been erased.
Perform the interactions appropriately so that after all interactions, the blackboard contains only one value ∑ i = 1 N A i \displaystyle\sum_{i=1}^{N}A_i i=1NAi.
The values of R R R and A i A_i Ai are determined before the start of the conversation between your program and the judge.

Constraints

2 ≤ N ≤ 1000 2 \leq N \leq 1000 2N1000
1 ≤ R ≤ 1 0 9 1 \leq R \leq 10^9 1R109
∣ A i ∣ ≤ R |A_i| \leq R AiR
∣ ∑ i = 1 N A i ∣ ≤ R \left|\displaystyle\sum_{i=1}^{N}A_i\right| \le R i=1NAi R
N N N, R R R, and A i A_i Ai are integers.

Input and Output

This is an interactive problem (where your program interacts with the judge via input and output).
First, read N N N from Standard Input.

N N N

Next, repeat the interactions until the blackboard contains only one value ∑ i = 1 N A i \displaystyle\sum_{i=1}^{N}A_i i=1NAi.
When performing addition, make an output in the following format to Standard Output. Append a newline at the end. Here, i i i and j j j are distinct positive integers.

  • i i i j j j

The response from the judge will be given from Standard Input in the following format:

P P P

Here, P P P is an integer:
If P ≥ N + 1 P \geq N + 1 PN+1, it means that the value X i + X j X_i + X_j Xi+Xj has been written on the blackboard, and it is the P P P-th integer written.
If P = − 1 P = -1 P=1, it means that i i i and j j j do not satisfy the constraints, or the number of interactions has exceeded 25000 25000 25000.
When performing comparison, make an output in the following format to Standard Output. Append a newline at the end. Here, i i i and j j j are distinct positive integers.

? i i i j j j

The response from the judge will be given from Standard Input in the following format:

Q Q Q

Here, Q Q Q is an integer:
If Q = 1 Q = 1 Q=1, it means that KaTeX parse error: Expected 'EOF', got '&' at position 5: X_i &̲lt; X_j is true.
If Q = 0 Q = 0 Q=0, it means that KaTeX parse error: Expected 'EOF', got '&' at position 5: X_i &̲lt; X_j is false.
If Q = − 1 Q = -1 Q=1, it means that i i i and j j j do not satisfy the constraints, or the number of interactions has exceeded 25000 25000 25000.
For both types of interactions, if the judge’s response is − 1 -1 1, your program is already considered incorrect. In this case, terminate your program immediately.
When the blackboard contains only one value ∑ i = 1 N A i \displaystyle\sum_{i=1}^{N}A_i i=1NAi, report this to the judge in the following format. This does not count towards the number of interactions. Then, terminate your program immediately.

!

If you make an output in a format that does not match any of the above, -1 will be given from Standard Input.

-1

In this case, your program is already considered incorrect. Terminate your program immediately.

Notes

For each output, append a newline at the end and flush Standard Output. Otherwise, the verdict may be TLE.
Terminate your program immediately after outputting the result (or receiving -1). Otherwise, the verdict will be indeterminate.
Extra newlines will be considered as malformed output.

Sample Input and Output

Here is a possible conversation with N = 3 , R = 10 , A 1 = − 1 , A 2 = 10 , A 3 = 1 N=3, R=10, A_1=-1, A_2=10, A_3=1 N=3,R=10,A1=1,A2=10,A3=1.

InputOutputExplanation
3First, the integer $N$ is given.
? 1 2Perform a comparison.
1The judge returns $1$ because $X_1\lt X_2\ (-1\lt 10)$.
+ 1 3Perform an addition.
4The judge erases $X_1 = -1$ and $X_3 = 1$ from the blackboard and writes $X_1 + X_3 = 0$. This is the fourth integer written.
+ 2 4Perform an addition.
5The judge erases $X_2 = 10$ and $X_4 = 0$ from the blackboard and writes $X_2 + X_4 = 10$. This is the fifth integer written.
!The blackboard contains only one value $\displaystyle\sum_{i=1}^{N}A_i$, so report this to the judge.

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;bool cmp(int a, int b) {cout << "? " << a << " " << b << endl;int ok;cin >> ok;return ok;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int n;cin >> n;std::vector<int> id;for (int i = 1; i <= n; i ++)id.push_back(i);sort(id.begin(), id.end(), cmp);while (n > 1) {cout << "+ " << id[0] << " " << id.back() << endl;int p;cin >> p;id.erase(id.begin()), id.pop_back();n --;if (n == 1) break;int l = 0, r = id.size() - 1;while (l < r) {int mid = l + r >> 1;if (cmp(p, id[mid])) r = mid;else l = mid + 1;}if (!cmp(p, id[r])) r ++;id.insert(id.begin() + r, p);}cout << "!\n";return 0;
}

视频题解

AtCoder Regular Contest 179(A ~ C 题讲解)


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/21461.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

交互设计如何助力传统技艺在当代复兴?

背景介绍 榫卯是中国传统木工中一种独特的接合技术&#xff0c;它通过构件间的凸凹部分相互配合来实现两个或多个构件的紧密结合。这种结构方式不依赖于钉子或其他金属连接件&#xff0c;而是利用木材自身的特性&#xff0c;通过精巧的设计和工艺&#xff0c;实现构件间的稳定…

GEE数据集:美国植被干旱响应指数 (Vegetation Drought Response Index,VegDRI)数据集

植被干旱响应指数 (VegDRI) 简介 植被干旱响应指数&#xff08;VegDRI&#xff09;是一个每周一次的地理空间模型&#xff0c;用于描述干旱对美国本土植被造成的压力。VegDRI干旱监测工具是由美国地质调查局EROS中心、内布拉斯加大学国家干旱缓解中心&#xff08;NDMC&#…

【最新鸿蒙应用开发】——数据存储?持久化?

数据存储 鸿蒙应用中的关于数据存储这块&#xff0c;分为应用状态管理存储还有一些数据持久化存储&#xff0c;不清楚概念的可以看我之前的前两篇文章&#xff0c;这边主要帮助大家区别一下状态存储和数据持久化存储的区别&#xff0c;避免概念和使用场景混淆。 1. localStora…

vruntime

vruntime vruntime 变量存放进程的虚拟运行时间,虚拟时间是以 ns 为单位的,which is the actual runtime (the amount of time spent running) normalized (or weighted) by the number of runnable processesvruntime 和定时器节拍不再相关。优先级相同的所有进程的虚拟运行时…

计算机网络学习实践:配置主机通过DHCP获取IP并通过域名访问web服务器

计算机网络学习实践&#xff1a;配置主机通过DHCP获取IP并通过域名访问web服务器 点一点就能配置&#xff0c;不需要输入命令 1.实验准备 实验环境&#xff1a;思科的模拟器 实验设备&#xff1a; 3个服务器&#xff0c;1个二层交换机&#xff08;不是三层的&#xff09;&a…

JavaScript第七讲:数组,及练习题

目录 今天话不多说直接进入正题&#xff01; 1. 创建数组对象 2. 数组长度 3. 遍历一个数组 4. 连接数组 5. 通过指定分隔符&#xff0c;返回一个数组的字符串表达 6. 分别在最后的位置插入数据和获取数据(获取后删除) 7. 分别在最开始的位置插入数据和获取数据(获取后删…

fatal error C1859:意外的预编译头错误,只需重新运行编译器就可能修复此问题

解决 菜单栏–生成–清理解决方案–菜单栏–生成–生成解决方案

对象业务的修改元数据接口

如下是官方文档中针对元数据的说明。 After you upload the object, you cannot modify object metadata. The only way to modify object metadata is to make a copy of the object and set the metadata. 对象的元数据仅在上传对象时或者复制对象时支持修改&#xff0c;在某…

一个弹出的虚假安全警告去除

虚假的安全警告 poratus.azurewebsites.net Pornographic spyware detected! Remove viruses with Avira Antivirus 通过 Microsoft Edge GPT-4 (OpenAI) 这个提示可能是一个虚假的安全警告&#xff0c;被称为“恐吓软件”&#xff08;scareware&#xff09;&#xff0c;旨在…

2024年上半年高级信息系统项目管理师考后总结

复习了大概两个月&#xff0c;终于度过了这场考试。又是加班996&#xff0c;又是复习听课写论文做真题&#xff0c;真心累。没办法&#xff0c;年纪大了&#xff0c;不考考证&#xff0c;没法混啊。 所以&#xff0c;建议大家趁年轻&#xff0c;必须必须必须把高级软考的证给拿…

名下企业查询,清晰明了;在线操作,方便快捷

在现代社会&#xff0c;越来越多的人开始涉足创业和投资&#xff0c;拥有自己的企业成为一种时尚。然而&#xff0c;随之而来的是繁琐的企业注册流程和复杂的信息查询。为了解决这个问题&#xff0c;挖数据平台推出了一项名下企业查询接口&#xff0c;提供了一种方便快捷的方式…

pytorch onnx ncnn间的关系

PyTorch、ONNX 和 NCNN 是深度学习领域中的三个重要工具或框架&#xff0c;它们在模型开发、转换和部署过程中扮演着不同但相互关联的角色。以下是它们之间的关系和各自的作用&#xff1a; PyTorch 角色 PyTorch 是一个开源的深度学习框架&#xff0c;由 Facebooks AI Resea…

计算机网络介绍

计算机网络介绍 概述网络概述相关硬件 链路层VLAN概念VLAN 特点VLAN 的划分帧格式端口类型原理 STP概念特点原理 Smart Link概念特点组网 网络层ARP概念原理 IP概念版本IP 地址 IPv4IP 地址数据报格式 IPv6特点IP 地址数据报格式 ICMP概念分类报文格式 VRRP概念原理报文格式 OS…

MySQL创建新用户并设置新密码

创建新用户并设置新密码的步骤在 MySQL 中相对直接。以下是具体步骤&#xff1a; 登录到 MySQL&#xff1a; 打开终端或命令行界面&#xff0c;使用以下命令以 root 用户或其他具有足够权限的用户登录到 MySQL 服务器&#xff1a; mysql -u root -p输入 root 用户的密码。 选择…

echarts中api返回数据的结构是时间和数据是两个数组返回的如何使用

如果ECharts的API返回的数据结构是时间和数据分别作为两个数组返回的&#xff0c;你可以将这两个数组分别赋值给x轴和y轴的数据。 例如&#xff0c;假设API返回了以下两个数组&#xff1a; const timeData [2022-01-01, 2022-01-02, 2022-01-03]; const valueData [10, 20,…

片上电控系统集成技术

一、背景 片上电机控制系统集成技术&#xff08;On-Chip Motor Control System Integration&#xff09;是一种先进的电子工程技术&#xff0c;它主要聚焦于将复杂的电机控制算法和硬件组件整合到单一集成电路&#xff08;IC&#xff09;中&#xff0c;以便于高效、精确地管理…

计算机毕业设计 | 基于Koa+vue的高校宿舍管理系统宿舍可视化系统

项目介绍 项目背景 随着科技的发展&#xff0c;智能化管理越来越重要。大学生在宿舍的时间超过了1/3&#xff0c;因此良好的宿舍管理对学生的生活和学习极为关键。学生宿舍管理系统能够合理安排新生分配宿舍&#xff0c;不浪费公共资源&#xff0c;减轻学校管理压力&#xff…

9.1JavaEE——Spring JDBC

一、JDBCTemplate概述 1、JDBCTemplate作用 针对数据库操作&#xff0c;Spring框架提供了JdbcTemplate类&#xff0c;JdbcTemplate是一个模板类&#xff0c;Spring JDBC中的更高层次的抽象类均在JdbcTemplate模板类的基础上创建。 JdbcTemplate类提供了操作数据库的基本方法&a…

计算机视觉与深度学习实战,Python工具,深度学习的视觉场景识别

一、引言 随着人工智能技术的快速发展,计算机视觉和深度学习已成为当今最热门的研究领域之一。在计算机视觉中,视觉场景识别是一项重要的任务,旨在通过计算机对图像或视频中的场景进行自动分类和理解。Python作为一种强大的编程语言,结合深度学习框架,为计算机视觉领域的研…

关于工作组

什么是局域网&#xff08;内网&#xff09; 我们常说的内网指的就是局域网&#xff0c;局域网&#xff08;Local Area Network&#xff0c;简称LAN&#xff09;是指在相对较小的地理范围内&#xff0c;如一个办公室、学校、住宅区或建筑群内部&#xff0c;通过通信设备&#xf…