Linux进程间共享内存通信时如何同步?

在Linux中,进程间的共享内存通信需要通过同步机制来保证数据的正确性和一致性,常用的同步机制包括信号量互斥锁条件变量等。

其中,使用信号量来同步进程间的共享内存访问是一种常见的方法。每个共享内存区域可以关联一个或多个信号量,以保护共享内存区域的读写操作。在访问共享内存之前,进程需要获取信号量的使用权,当完成读写操作后,再释放信号量的使用权,以便其他进程可以访问共享内存区域。

1、信号量同步

下面是一个简单的示例程序,展示了如何使用信号量来同步共享内存区域的读写操作:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <string.h>#define SHM_SIZE 1024
#define SEM_KEY 0x123456// 定义联合体,用于信号量操作
union semun {int val;struct semid_ds *buf;unsigned short *array;
};int main() {int shmid, semid;char *shmaddr;struct sembuf semops[2];union semun semarg;// 创建共享内存区域shmid = shmget(IPC_PRIVATE, SHM_SIZE, IPC_CREAT | 0666);if (shmid == -1) {perror("shmget");exit(1);}// 将共享内存区域附加到进程地址空间中shmaddr = shmat(shmid, NULL, );if (shmaddr == (char *) -1) {perror("shmat");exit(1);}// 创建信号量semid = semget(SEM_KEY, 1, IPC_CREAT | 0666);if (semid == -1) {perror("semget");exit(1);}// 初始化信号量值为1semarg.val = 1;if (semctl(semid, , SETVAL, semarg) == -1) {perror("semctl");exit(1);}// 等待信号量semops[].sem_num = ;semops[].sem_op = ;semops[].sem_flg = ;if (semop(semid, semops, 1) == -1) {perror("semop");exit(1);}// 在共享内存中写入数据strncpy(shmaddr, "Hello, world!", SHM_SIZE);// 释放信号量semops[].sem_num = ;semops[].sem_op = 1;semops[].sem_flg = ;if (semop(semid, semops, 1) == -1) {perror("semop");exit(1);}// 等待信号量semops[].sem_num = ;semops[].sem_op = ;semops[].sem_flg = ;if (semop(semid, semops, 1) == -1) {perror("semop");exit(1);}// 从共享内存中读取数据printf("Received message: %s\n", shmaddr);// 释放共享内存区域if (shmdt(shmaddr) == -1) {perror("shmdt");exit(1);}// 删除共享内存区域if (shmctl(shmid, IPC_RMID, NULL) == -1) {perror("shmctl");exit(1);}// 删除信号量if (semctl(semid, , IPC_RMID, semarg) == -1) {perror("semctl");exit(1);}return ;

在这个示例程序中,使用了System V信号量来同步共享内存的读写操作。程序首先创建一个共享内存区域,并将其附加到进程地址空间中。然后,使用semget()函数创建一个信号量,并将其初始化为1。在写入共享内存数据之前,程序使用semop()函数等待信号量。一旦获取了信号量的使用权,程序就可以在共享内存区域中写入数据。写入数据完成后,程序再次使用semop()函数释放信号量的使用权。在读取共享内存数据时,程序同样需要等待信号量的使用权,读取数据完成后,再次释放信号量的使用权。

需要注意的是,使用信号量来同步共享内存访问时,需要确保每个进程都按照一定的顺序进行读写操作。否则,就可能出现死锁等问题。因此,在设计进程间共享内存通信时,需要仔细考虑数据的读写顺序,并采取合适的同步机制来确保数据的正确性和一致性。

2、互斥锁同步

互斥量也是一种常用的同步机制,可以用来实现多个进程之间的共享内存访问。在Linux中,可以使用pthread库中的互斥量来实现进程间共享内存的同步。

下面是一个使用互斥量实现共享内存同步的示例程序:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>#define SHM_SIZE 1024// 共享内存结构体
typedef struct {pthread_mutex_t mutex;char data[SHM_SIZE];
} shm_data_t;int main() {int fd;shm_data_t *shm_data;pthread_mutexattr_t mutex_attr;pthread_mutex_t *mutex;// 打开共享内存文件if ((fd = shm_open("/my_shm", O_CREAT | O_RDWR, 0666)) == -1) {perror("shm_open");exit(1);}// 调整共享内存文件大小if (ftruncate(fd, sizeof(shm_data_t)) == -1) {perror("ftruncate");exit(1);}// 将共享内存映射到进程地址空间中if ((shm_data = mmap(NULL, sizeof(shm_data_t), PROT_READ | PROT_WRITE, MAP_SHARED, fd, )) == MAP_FAILED) {perror("mmap");exit(1);}// 初始化互斥量属性pthread_mutexattr_init(&mutex_attr);pthread_mutexattr_setpshared(&mutex_attr, PTHREAD_PROCESS_SHARED);// 创建互斥量mutex = &(shm_data->mutex);pthread_mutex_init(mutex, &mutex_attr);// 在共享内存中写入数据pthread_mutex_lock(mutex);sprintf(shm_data->data, "Hello, world!");pthread_mutex_unlock(mutex);// 在共享内存中读取数据pthread_mutex_lock(mutex);printf("Received message: %s\n", shm_data->data);pthread_mutex_unlock(mutex);// 解除共享内存映射if (munmap(shm_data, sizeof(shm_data_t)) == -1) {perror("munmap");exit(1);}// 删除共享内存文件if (shm_unlink("/my_shm") == -1) {perror("shm_unlink");exit(1);}return ;
}

在这个示例程序中,使用了pthread库中的互斥量来同步共享内存的读写操作。程序首先创建一个共享内存文件,并将其映射到进程地址空间中。然后,使用pthread_mutex_init()函数创建一个互斥量,并将其初始化为共享内存中的一部分。在写入共享内存数据之前,程序使用pthread_mutex_lock()函数等待互斥量。一旦获取了互斥量的使用权,程序就可以在共享内存区域中写入数据。写入数据完成后,程序再次使用pthread_mutex_unlock()函数释放互斥量的使用权。在读取共享内存数据之前,程序再次使用pthread_mutex_lock()函数等待互斥量。一旦获取了互斥量的使用权,程序就可以在共享内存区域中读取数据。读取数据完成后,程序再次使用pthread_mutex_unlock()函数释放互斥量的使用权。后,程序解除共享内存映射,并删除共享内存文件。

使用互斥量来同步共享内存访问有以下几点注意事项:

1、互斥量需要初始化。在创建互斥量之前,需要使用pthread_mutexattr_init()函数初始化互斥量属性,并使用pthread_mutexattr_setpshared()函数将互斥量属性设置为PTHREAD_PROCESS_SHARED,以便多个进程可以共享互斥量。

2、在访问共享内存之前,需要使用pthread_mutex_lock()函数获取互斥量的使用权。一旦获取了互斥量的使用权,程序才能访问共享内存。在完成共享内存的访问之后,需要使用pthread_mutex_unlock()函数释放互斥量的使用权,以便其他进程可以访问共享内存。

3、互斥量必须存储在共享内存区域中。在创建互斥量时,需要将其初始化为共享内存区域中的一部分,以便多个进程可以访问同一个互斥量。

4、程序必须保证互斥量的一致性。多个进程共享同一个互斥量时,必须保证互斥量的一致性。否则,可能会导致多个进程同时访问共享内存区域,导致数据错误或者系统崩溃。

总之,使用互斥量来同步共享内存访问可以有效地避免多个进程同时访问共享内存区域的问题,从而保证数据的一致性和程序的稳定性。在实际编程中,需要根据具体的需求选择不同的同步机制,以保证程序的正确性和效率。

3、条件变量同步

在Linux下,可以使用条件变量(Condition Variable)来实现多进程之间的同步。条件变量通常与互斥量(Mutex)结合使用,以便在共享内存区域中对数据进行同步访问。

条件变量是一种线程同步机制,用于等待或者通知某个事件的发生。当某个进程需要等待某个事件发生时,它可以通过调用pthread_cond_wait()函数来阻塞自己,并将互斥量释放。一旦事件发生,其他进程就可以通过调用pthread_cond_signal()或pthread_cond_broadcast()函数来通知等待线程。等待线程接收到通知后,会重新获取互斥量,并继续执行。

在共享内存通信中,可以使用条件变量来实现进程之间的同步。具体操作步骤如下:

初始化互斥量和条件变量。在创建共享内存之前,需要使用pthread_mutexattr_init()和pthread_condattr_init()函数分别初始化互斥量属性和条件变量属性。然后,需要使用pthread_mutexattr_setpshared()和pthread_condattr_setpshared()函数将互斥量属性和条件变量属性设置为PTHREAD_PROCESS_SHARED,以便多个进程可以共享它们。

等待条件变量。在读取共享内存之前,程序可以使用pthread_cond_wait()函数等待条件变量。调用pthread_cond_wait()函数会自动释放互斥量,并阻塞当前进程。一旦其他进程发送信号通知条件变量发生变化,等待线程就会重新获得互斥量,并继续执行。

发送信号通知条件变量变化。在向共享内存中写入数据之后,程序可以使用pthread_cond_signal()或pthread_cond_broadcast()函数发送信号通知条件变量发生变化。调用pthread_cond_signal()函数会发送一个信号通知等待线程条件变量发生变化,而调用pthread_cond_broadcast()函数会向所有等待线程发送信号通知条件变量发生变化。

使用条件变量来同步共享内存访问有以下几点注意事项:

1、程序必须使用互斥量来保护共享内存。在使用条件变量之前,程序必须先获取互斥量的使用权,以便保护共享内存区域中的数据不被多个进程同时访问。

2、程序必须保证条件变量的一致性。多个进程共享同一个条件变量时,必须保证条件变量的一致性。否则,可能会导致多个进程同时访问共享内存区域,导致数据错误或者系统崩溃。

3、程序必须正确使用条件变量。在使用条件变量时,需要正确地使用pthread_cond_wait()、pthread_cond_signal()和pthread_cond_broadcast()函数,否则可能会导致死锁或者其他问题。

4、程序必须正确处理信号。当调用pthread_cond_wait()函数时,程序可能会因为接收到信号而提前返回,此时程序需要正确地处理信号。

下面是一个使用条件变量实现进程间共享内存同步的示例代码:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <pthread.h>#define SHM_SIZE 4096
#define SHM_NAME "/myshm"
#define SEM_NAME "/mysem"typedef struct {pthread_mutex_t mutex;pthread_cond_t cond;char buffer[SHM_SIZE];
} shm_t;int main(int argc, char *argv[]) {int fd, pid;shm_t *shm;pthread_mutexattr_t mutex_attr;pthread_condattr_t cond_attr;// 创建共享内存区域fd = shm_open(SHM_NAME, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);if (fd < ) {perror("shm_open");exit(1);}// 设置共享内存大小if (ftruncate(fd, sizeof(shm_t)) < ) {perror("ftruncate");exit(1);}// 将共享内存映射到进程地址空间shm = mmap(NULL, sizeof(shm_t), PROT_READ | PROT_WRITE, MAP_SHARED, fd, );if (shm == MAP_FAILED) {perror("mmap");exit(1);}// 初始化互斥量属性和条件变量属性pthread_mutexattr_init(&mutex_attr);pthread_condattr_init(&cond_attr);pthread_mutexattr_setpshared(&mutex_attr, PTHREAD_PROCESS_SHARED);pthread_condattr_setpshared(&cond_attr, PTHREAD_PROCESS_SHARED);// 初始化互斥量和条件变量pthread_mutex_init(&shm->mutex, &mutex_attr);pthread_cond_init(&shm->cond, &cond_attr);// 创建子进程pid = fork();if (pid < ) {perror("fork");exit(1);}if (pid == ) {// 子进程写入共享内存sleep(1);pthread_mutex_lock(&shm->mutex);sprintf(shm->buffer, "Hello, world!");pthread_cond_signal(&shm->cond);pthread_mutex_unlock(&shm->mutex);exit();} else {// 父进程读取共享内存pthread_mutex_lock(&shm->mutex);pthread_cond_wait(&shm->cond, &shm->mutex);printf("Received message: %s\n", shm->buffer);pthread_mutex_unlock(&shm->mutex);}// 删除共享内存if (shm_unlink(SHM_NAME) < ) {perror("shm_unlink");exit(1);}return ;
}

在这个示例中,程序创建了一个名为"/myshm"的共享内存区域,并将其映射到进程地址空间中。然后,程序使用互斥量和条件变量来同步进程之间的访问共享内存区域。具体来说,父进程首先锁定互斥量,然后等待条件变量的信号。子进程等待一秒钟后,锁定互斥量,将"Hello, world!"字符串写入共享内存区域,然后发送条件变量信号,并释放互斥量。此时,父进程将收到条件变量信号并锁定互斥量,读取共享内存区域中的内容,并释放互斥量。

需要注意的是,在使用条件变量时,我们需要遵循一些规则来保证程序的正确性,如在等待条件变量时必须锁定互斥量,并使用while循环来检查条件变量的值是否满足要求,等待条件变量信号的线程必须在等待之前锁定互斥量,在等待之后解锁互斥量,等待条件变量信号的线程可能会因为接收到信号而提前返回等等。

总之,使用互斥量和条件变量来实现进程间共享内存通信的同步,需要我们仔细考虑程序中所有可能出现的情况,并正确地使用互斥量和条件变量函数来同步进程之间的访问。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/197.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全量知识系统 详细程序设计 之“编程理念”(QA 百度搜索)

Q1. 今天聊聊 全量知识系统 &#xff08;“全知系统”&#xff09;详细程序设计 之“编程理念” 全量知识系统&#xff08;全知系统&#xff09;是一个旨在整合、处理和提供广泛知识的系统。在详细程序设计之前&#xff0c;确立清晰的编程理念是至关重要的。以下是一些建议的编…

CentOS 7安装Zookeeper

说明&#xff1a;本文介绍如何在CentOS 7操作系统下使用Zookeeper 下载安装 首先&#xff0c;去官网下载所需要安装的版本&#xff0c;我这里下载3.4.9版本&#xff1b; 上传到云服务器上&#xff0c;解压 tar -xvf zookeeper-3.4.9.tar.gz修改配置 进入Zookeeper目录下的co…

视觉感知画质评价算法CenseoQoE介绍

视频评价 视频质量评价(Video Quality Assessment,VQA)是指通过主观、客观的方式对视频图像的内容、画质等,进行感知、衡量与评价。 关于视频评价的详细介绍可以参考:视频质量评价VQA。 CenseoQoE CenseoQoE 是一个针对图像与视频感知画质评价从算法模型训练到应用落地…

【技术变现之道】如何打造IT行业的超级个体?

前言 在当今的数字化时代&#xff0c;IT行业蓬勃发展&#xff0c;为具备技术专长的个人提供了无限的可能性。想要成为IT行业的超级个体&#xff0c;实现知识与技能的变现吗&#xff1f;以下是一些高效途径&#xff0c;助你一臂之力&#xff01; 1. 独立接单外包 1&#xff09…

vue3数字滚动组件

效果图 一、安装插件 npm i vue3-count-to 二、components文件夹下新建BaseCountTo.vue文件 <template><BaseCountTo :endVal"endVal" :decimals"decimals" /> </template> <script setup > import { defineComponent, watch, r…

改手机IP地址的软件推荐

随着移动互联网的普及&#xff0c;手机已成为人们日常生活中不可或缺的一部分。而在使用手机的过程中&#xff0c;IP地址作为一个重要的网络标识&#xff0c;有时也需要进行修改或更改。为了满足这一需求&#xff0c;市面上涌现出了许多改手机IP地址的软件。虎观代理将对这些软…

韩顺平Java | C27 正则表达式

入门介绍 需求&#xff1a;提取文本中某类字符 传统方法&#xff1a;遍历每个字符&#xff0c;判断其是否在ASCII码中某种类型得编码范围内&#xff0c;代码量大&#xff0c;效率不高 正则表达式(RegExp, regular expression)&#xff1a;处理文本的利器&#xff0c;是对字符…

全志H616学习笔记

全志H616 ARM Cortex-A53四核 --64 位 1.5GHz 为什么学 : 学习目标 -- Linux 系统 平台 -- ARM 架构 其实是 -- 运行在arm板上的Linux系统 蜂巢快递柜&#xff0c;配送机器人&#xff0c;这些应用场景用C51,STM32单片机无法实现 第三方介入库的局限性&#xff0c;比如刷…

java混淆的公司有哪些

一些提供 Java 混淆服务的公司包括&#xff1a; PreEmptive Solutions&#xff1a;PreEmptive Solutions 提供了一系列用于保护 Java 和 .NET 应用程序的工具&#xff0c;包括混淆、代码压缩、加密和漏洞检测等功能。 DexGuard&#xff1a;DexGuard 是 Guardsquare 公司推出的…

【JavaWeb】异步请求——AJAX

目录 Ajax&#xff08;Asynchronous JavaScript and XML&#xff09;优点传统Web与Ajax的差异Ajax工作流程Ajax 经典应用场景XMLHttpRequest常用方法事件常用属性 ajax: GET请求和POST请求的区别 传统Ajax实现传统方式实现Ajax的不足 $.ajax()语法常用属性参数常用函数参数 Aja…

第十二章元数据管理10分

Q&#xff1a;元数据是数据资产目录 A&#xff1a;错&#xff0c;资源目录。【元数据管理原则&#xff1a;应规尽规&#xff0c;应收尽收】 12.1 引言 元数据最常见的定义是“关于数据的数据”。这个定义非常简单&#xff0c;但也容易引起误解。可以归类为元数据的信息范围很…

golang 迷宫回溯算法(递归)

// Author sunwenbo // 2024/4/14 20:13 package mainimport "fmt"// 编程一个函数&#xff0c;完成老鼠找出路 // myMap *[8][7]int 地图&#xff0c;保证是同一个地图&#xff0c;因此是引用类型 // i,j表示对地图的哪个点进行测试 func SetWay(myMap *[8][7]int, …

网络基础-基于TCP协议的Socket通讯

一、Socket通讯基于TCP协议流程图 UDP 的 Socket 编程相对简单些不在介绍。 二、 服务端程序启动 服务端程序要先跑起来&#xff0c;然后等待客户端的连接和数据。 服务端程序首先调用 socket() 函数&#xff0c;创建网络协议为 IPv4&#xff0c;以及传输协议为 TCP 的…

基于XML配置bean(二)

文章目录 1.工厂中获取bean1.静态工厂1.MyStaticFactory.java2.beans.xml3.测试 2.实例工厂1.MyInstanceFactory.java2.beans.xml3.测试 3.FactoryBean&#xff08;重点&#xff09;1.MyFactoryBean.java2.beans.xml3.测试 2.bean配置信息重用继承抽象bean1.beans.xml2.测试 3.…

HarmonyOS实战开发-如何实现一个简单的健康生活应用

功能概述 成就页面展示用户可以获取的所有勋章&#xff0c;当用户满足一定的条件时&#xff0c;将点亮本页面对应的勋章&#xff0c;没有得到的成就勋章处于熄灭状态。共有六种勋章&#xff0c;当用户连续完成任务打卡3天、7天、30天、50天、73天、99天时&#xff0c;可以获得…

SpringBoot框架——8.MybatisPlus常见用法(常用注解+内置方法+分页查询)

1.MybatisPlus常用注解&#xff1a; 1.1 当数据库、表名和字段名和实体类完全一致时无需加注解&#xff0c;不一致时&#xff1a; TableName指定库名 TableId指定表名 TableField指定字段名 1.2 自增主键&#xff1a; TableId(typeIdType.AUTO) private Long id; 1.3 实体类中属…

2000-2022年各省人力资本水平数据(含原始数据+计算过程+计算结果)(无缺失)

2000-2022年各省人力资本水平数据&#xff08;含原始数据计算过程计算结果&#xff09; 1、时间&#xff1a;2000-2022年 2、来源&#xff1a;国家统计局 3、指标&#xff1a;普通高等学校在校学生数(万人)、年末常住人口&#xff08;万人&#xff09;、人力资本水平 4、范…

CTFshow-PWN-前置基础(pwn20)

提交ctfshow{【.got表与.got.plt是否可写(可写为1&#xff0c;不可写为0)】,【.got的地址】,【.got.plt的地址】 前置基础知识&#xff1a; .got 和 .got.plt 是 ELF&#xff08;Executable and Linkable Format&#xff0c;可执行和可链接格式&#xff09;二进制文件中的两个…

(四)qt中使用ffmpeg播放视频,可暂停恢复

一、在qt中添加ffmpeg库及头文件 INCLUDEPATH /usr/local/ffmpeg/include LIBS -L/usr/local/lib -lavutil -lavcodec -lavformat -lswscale 二、详细代码 FFempegVideoDecode 视频解码类&#xff08;放入线程中&#xff09; ffmpegvideodecode.h #ifndef FFMPEGVIDEODE…

Qt | 自定义事件第三节

Qt | 事件第一节Qt | 事件第二节书接上回 六、自定义事件与事件的发送 1、发送事件由以下两个函数完成 static void QCoreApplication::postEvent (QObject* receiver, QEvent* event, int priority=Qt::NormalEventPriority);