Pooling Sequencing

1、混合(Pooling)样本测序研究

https://www.jianshu.com/p/19ce438ccccf

1.1 混合测序基础

测序成本虽然下降了,但对于植物育种应用研究来说还是很高,动不动就上百群体,小小植物个体价值又低,测完了很可能后面就用不到了。这时,混合样本测序是一种省钱的好办法。

混池测序(Pool-seq)相对于GWAS或其他精细定位策略而言,其实是一个初定位产品,其结果很有可能是跟性状相关的候选区域。

概念:
混合样本测序一般是选择表型极端或目标性状差异的个体混合,构建一个文库进行测序。

原理:
假设每个样本被测到的概率相等,通过测序reads数计算等位基因频率。如果基因与研究性状有关,那么理想情况下,表型差异显著的混合样本中,该基因等位基因频率差异显著。

在这里插入图片描述

不足:

  • 大群体的等位基因频率才能代表该群体真实的情况,选择少量样本可能带来选样误差;
  • 各样本测序量不均一引入新的偏差。
    但研究表明,在大样本量混合且提高测序深度的情况下,混合样本能够准确评估等位基因频率。

影响因素及建议:

  • 群体类型:群体类型决定研究背景是否纯,影响定位的精确性。混合样本测序最好是只有目标性状存在差异,其他性状一致,即遗传背景纯,一般永久群体>临时群体>自然群体。

  • 混合样本量:多态性高的群体(如F2),推荐混合样本量>100;多态性低的群体(如BCF),推荐混合样本量>20;且作图群体选择比例<25%。

  • 亲本选择:两个亲本尽量性状差异单一,杂合位点少。

  • 混合样本的均一性:样本量小的时候影响大,样本量大影响小。

  • 表型:表型统计不准确,或由多个微效基因控制,会引起定位效果不佳。

  • 参考基因组:基因组组装好坏,基因组注释情况,物种连锁不平衡强易导致候选区域过大。建议采用组装到染色体水平的参考基因组。

  • 测序错误:混合样本测序比较难通过算法区分是测序错误还是稀有变异,测序深度高能有效降低影响。

  • 测序数据量:测序数据量推荐50X以上,测序深度高有利于检测到多态的SNP位点。

  • 比对:混合样本无法校正比对错误,CNV会影响等位基因频率统计。

1.2 点突变检测

对于隐形纯合点突变,效果较好。

在这里插入图片描述

MutMap和MutMap+是利用SNP-index算法,需要参考基因组,如果目标位点位于参考基因组没有组装上的gap区,或是参考基因组不具有的序列中,利用MutMap检测方法就不能有效检测到目标突变位点。

MutMap-Gap方法结合了MutMap和de novo组装。先通过MutMap分析SNP-index peak区,发现找不到跟突变性状相关的基因,再将之前比对不上参考基因组的野生型亲本unmapped reads和MutMap分析中SNP-index peak区域的野生型亲本比对上的reads一起进行de novo组装,获得潜在的新基因,并以此为参考再计算SNP-index,检测目标突变位点。

1.3 BSA

BSA(Bulked segregant analysis,混合分组分析),利用目标性状存在极端表型差异的两个亲本构建分离群体,在子代分离群体中,选取两组表型差异极端的个体分别构建混合池 ,结合高通量测序技术对混合样本测序,比较两组群体在多态位点(SNP)的等位基因频率(AF)是否具有显著差异,定位与目标性状相关联的位点并对其进行注释,研究控制目标性状的基因及其分子机制。

SNP-index是主流的BSA定位算法。其原理是构建子代分离群体,经过挑选极端性状构建混池后对SNP进行检测,对各混池进行等位基因频率分析,并与其中一个亲本进行比较。与此亲本不同的基因型所占的比例,即为该位点的SNP-index。

在这里插入图片描述

注意这里的reference并不是变异检测的参考基因组,而是构建群体所使用的亲本,所以SNP-index计算高度依赖于亲本测序数据。)

两个混池相减(上图右)得到了△SNP-index的结果,即两个混池之间SNP基因型频率的差异。理论上说,不与性状相关的位点,△SNP-index的值应当在0左右,代表混池之间不存在差异;而QTL及其相连锁位置的SNP,△SNP-index值应当呈现较高的数值。

△SNP index会存在因统计偏差造成的假阳性位点,可以通过计算滑窗内所有SNP的△SNP-index,来消除其影响,得到真正QTL所在的基因组区域。

其他算法如欧几里得距离(ED),Gradedpool-seq(Ridit检验)等。

这里的BSA是指狭义上的QTL-seq,针对有主效基因的数量性状。实际上上面的质量性状/点突变性状、InDel-seq(InDel突变性状)以及下面的BSR,都属于BSA的范畴,原理相似。此外还有QTG-seq。相应的Pipeline可参考:http://genome-e.ibrc.or.jp/home/bioinformatics-team/mutmap

1.4 BSR

BSR(Bulked segregant RNA sequencing)同样依据分组混合的原理,在RNA水平上进行高通量测序并定位候选基因,即BSA+RNAseq。BSR的混池同样选取分离群体中的极端性状单株,混池用的单株数会比BSA多一些(大多大于30),提取RNA进行混池,再进行转录组测序,mapping参考基因组后同样进行变异分析,确定候选区间。BSR的优势在于不仅提供变异信息,还能提供候选区域中基因的表达信息。

BSR的劣势:RNAseq只能检测表达基因上的SNP,检测的SNP数量少,一般只适用于高频的SNP。同时由于存在RNA编辑等问题,RNA层面检测的SNP和DNA层面也是有差别的,所以只有当DNA层面无法实现(复杂基因组)或DNA测序成本过高(超大基因组)等情况下可选择BSR,否则还是优先选择BSA。

1.5 混合样本GWAS分析

Pool –GWAS也是一种省钱策略,但还是非常小众。
比如:GWAS study using DNA pooling strategy identifies association of variant rs4910623 in OR52B4 gene with anti-VEGF treatment response in age-related macular degeneration

Pool –GWAS研究复杂遗传背景的性状功效降低,对稀有变异的检测能力下降。

1.6. 混合样本驯化研究

同样,分析获得的驯化相关位点很多,如果想用类似的方法检测复杂性状相关位点,后续挖掘真正的功能位点的难度还是很大。

1.7. 小结

在这里插入图片描述

2. BSA专题——分析方法大汇总 【派森诺】

https://www.sohu.com/a/414749205_120380672

在农业科学中,为了提升作物农艺性状,经常会遇到将与性状相关的基因或位点在基因组上进行定位的需求,此时BSA作为一种简便又高效的分析方法便有了大显身手的机会。可是BSA究竟是怎样的一种研究方法呢,适用于什么群体呢?跟着小编了解一下吧!

2.1 什么是BSA?

BSA(Bulked segregation analysis)即混合分组分析,也称分离群体分组分析,是指利用目标性状存在极端表型差异的两个亲本构建分离群体,在子代分离群体中,选取两组表型差异极端的个体分别构建混合池 ,结合高通量测序技术对混合样本测序,比较两组群体在多态位点(SNP)的等位基因频率(AF)是否具有显著差异,定位与目标性状相关联的位点并对其进行注释,研究控制目标性状的基因及其分子机制。

相较于传统的遗传学研究方法(基因定位常用分析方法,小编已经安排上啦!),BSA最大的特点是不需要对群体中的所有个体进行基因分型,而是对挑选的个体按照性状进行混合分析,所以可以极大地降低研究的工作量和成本。

2.2 什么样本适合BSA分析?

既然BSA已经兼具了简便,准确、高性价比等优点,自然也有自己的小性子了,BSA分析对使用的群体有一定要求。

1、 人工构建的遗传群体(最常用来的是F2、BC、RIL)。通常来说,使用自然群体和遗传群体都可以进行BSA分析,但是考虑到遗传背景较复杂,可能导致定位结果不理想,所以不推荐使用自然群体进行BSA研究。

2、 亲本目标性状差异明显,其他性状差异随机分布,所构建分离群体两个混池之间目标性状有显著差异,非目标性状无明显差异。

3、 有合适的参考基因组信息。参考基因组组装的越好,信息越全,对于后续基因定位和候选区间的注释都会更加精确,可以锁定候选区间并估计候选区域的大小。没有组装到染色体级别的参考基因组,分析思路是一样的,但只能得到某个或某些scaffolds中的snp与性状相关,无法估计候选区间大小,甚至再组装结果差的情况下,无法判断基因的物理位置。

2.3 BSA有哪些分析方法?

1、SNP index及△SNP index

SNP-index作为主流的BSA定位的算法,最早在2013年被提出(Takagi)。它的基本原理是,构建子代分离群体,经过挑选极端性状构建混池后对SNP进行检测,对各混池进行等位基因频率分析,并与其中一个亲本进行比较。与此亲本不同的基因型所占的比例,即为该位点的SNP-index。从下图可以看到,两个位点的SNP-index分别为0.4和1。值得注意的是,这里的reference指的并不是我们进行重测序变异检测的参考基因组,而是我们构建群体所使用的亲本。这也是为什么进行SNP-index计算必须依赖于亲本测序数据的缘故。
在这里插入图片描述

每个混池都得到一组SNP-index数据之后,两个混池相减(上图右),即得到了△SNP-index的结果,代表的是两个混池之间SNP基因型频率的差异。理论上说,不与性状相关的位点,△SNP-index的值应当在0左右,代表混池之间不存在差异;而QTL及其相连锁位置的SNP,△SNP-index值应当呈现较高的数值。△SNP index这种分析方法会存在因统计偏差造成的假阳性位点,这时我们可以通过计算滑窗内所有SNP的△SNP-index,来消除其影响,得到真正QTL所在的基因组区域。

2、 欧几里得距离(ED)

在这里插入图片描述

随着BSA技术的发展,SNP-index显示出了一定的局限性,比如亲本数据缺失,林木类较难构建分析群体,ED值的分析方法应运而生。在BSA和BSR中,欧几里得距离可以计算同一个位点上,两个混池之间的等位基因频率。两个极端性状子代混池只在控制性状的QTL及其连锁位点出现差异,所以通过各个位点欧几里得距离的计算,我们可以判断哪些位点更可能是控制对应性状的QTL。计算公式如下:

在这里插入图片描述

实际应用中,我们在BSA的两组混池之间可能会得到数十万甚至上百万个SNP,有的SNP可能实际与性状无关,但因为抽样偏差,导致计算得到的ED值很高,为了排除统计异常值,我们通常会采用滑窗对在一个窗口内所有位点的ED值进行拟合,消除抽样偏差产生的假阳性结果。而在BSA定位区间计算过程中,会对ED值采取乘方处理,放大ED值的差异,使定位区间更加明显。

3、 Gradedpool-seq(Ridit检验)

Gradedpool-seq的概念在2019年由韩斌和黄学辉课题组提出并发表于Nature Communication(Wang et al., 2019)。这种方法与常规BSA类似的是,它也是基于性状分离群体中按照性状选择子代个体构成混池(通常加上亲本)进行测序,并进行QTL定位的方式。Ridit是relative to an identified distribution unit一词的缩写,它是一种非参数检验分析方法,用于按等级分组资料的比较。而对于多个混池测序数据,Ridit检验会对每个位点的等位基因频率进行计算,判断其是否显著偏离标准分布,得到一个p值。换言之,这个位点的p值越小,即代表这个位点与性状相关联的可能性越高(与GWAS关联方法类似)。

在这里插入图片描述

由于在BSA项目中Ridit检验的对象只有2-4个混池,基因型数据较少,所以当Ridit检验的结果用曼哈顿图的形式展现出来,其噪音非常强烈,很难从中直观地判断我们的候选区间的位置。研究者们选取一定大小的窗口,并且将窗口内的SNP位点进行统计,计算p值低于阈值的位点所占的比例。一般经过这种

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/18877.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用PyAutoGUI识别PNG图像并自动点击按钮

在自动化测试、任务批处理等场景中,我们常常需要控制GUI程序的鼠标键盘操作。PyAutoGUI就是一个非常方便的Python模块,可以帮助我们实现这些操作。今天我们就来看看如何使用PyAutoGUI识别屏幕上的PNG图像,并自动点击图像所在位置。 C:\pythoncode\new\autoguirecongnizepng.py …

超结MOS在全桥电路上的应用-REASUNOS瑞森半导体

一、前言 全桥电路定义 全桥电路是一种常见的电子电路&#xff0c;由四个开关管和一个负载组成&#xff0c;可将直流电转换为交流电。 全桥电路的应用领域 全桥电路广泛应用于电力电子领域&#xff0c;如开关电源、变频器、逆变器、电动汽车、工业自动化等领域 。在电路中&…

Make-An-Audio——用于语音生成的提示增强扩散模型

0.引言 论文提出了一个从文本生成语音的扩散模型 Make-An-Audio。该模型将文本提示作为输入&#xff0c;并据此生成语音。例如&#xff0c;输入 “一只猫在喵喵叫&#xff0c;一个年轻女人的声音”&#xff0c;就会输出猫在喵喵叫&#xff0c;一个女人在说话的音频。这项研究已…

RET-CLIP:眼科疾病诊断大模型

RET-CLIP&#xff1a;眼科疾病诊断大模型 RET-CLIP模型的工作流程和架构图表组成部分工作流程 精细拆解应用RET-CLIP模型进行糖尿病视网膜病变分级 论文&#xff1a;http://arxiv.org/pdf/2405.14137v1 代码&#xff1a;https://github.com/sStonemason/RET-CLIP RET-CLIP 是…

Java手动启动jar包

启动jar包&#xff0c;去到当前jar包路径cmd&#xff0c; windows乱码先执行&#xff1a;chcp 65001 java -Xms512m -Xmx1024m -Dfile.encodingutf-8 -jar -Dspring.cloud.nacos.config.server-addr127.0.0.1:8848 -Dspring.cloud.nacos.discovery.server-addr127.0.0.1:8848 …

基于 DCT 的图像滤波

需求分析 对于图像去噪这一需求&#xff0c;我们可以通过DCT&#xff08;离散余弦变换&#xff09;算法来实现。DCT是一种基于频域的变换技术&#xff0c;可以将图像从空间域转换为频域&#xff0c;然后通过滤波等处理方式进行去噪。 针对这一需求&#xff0c;我们需要进行以下…

mmu之TLB的来源与实现

TLB的由来 遇到的问题 对于两级页表(Page Table)的设计&#xff0c;需要访问两次物理内存才可以得到虚拟地址对应的物理地址(一次访问第一级页表&#xff0c;另一次访问第二级页表)&#xff0c;而物理内存的运行速度相对于处理器本身来说&#xff0c;有几十倍的差距; 因此在处…

湘潭大学软件工程专业oracle-sqlplus安装教程

前言 笔者在网上找了一些教程&#xff0c;但是没有装好&#xff0c;或者不知道啥原因&#xff0c;反正就是登不进去老师要求的系统&#xff0c;连接不上服务器&#xff0c;非常苦恼&#xff0c;请教了一下同学&#xff0c;终于弄好了&#xff0c;本文希望能帮助到和我一样有相…

OpenHarmony面向万物智联的应用框架的思考与探索

应用框架&#xff0c;是操作系统连接开发者生态&#xff0c;实现用户体验的关键基础设施。业务的飞速发展促进了应用框架不断演进和变化。 01►业界应用框架的演进 应用是用户使用操作系统/设备的入口&#xff0c;应用框架则是应用开发和运行的基础设施。以移动端为例&#x…

Red Hat Enterprise Linux (RHEL) 8.10 发布 - 红帽企业 Linux 8 完美终结版

Red Hat Enterprise Linux (RHEL) 8.10 (x86_64, aarch64) - 红帽企业 Linux 红帽企业 Linux 8 完美终结版 请访问原文链接&#xff1a;Red Hat Enterprise Linux (RHEL) 8.10 (x86_64, aarch64) - 红帽企业 Linux&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处…

看看最新的B端登录界面,你是不是被潮流抛弃了?

毛玻璃风格&#xff08;Frosted Glass Style&#xff09;是新拟态设计风格中的一种分支&#xff0c;它灵感来源于现实世界中的毛玻璃材质。毛玻璃是一种通过在玻璃表面加工处理的方式&#xff0c;使其具有模糊、云翳和透明效果的特殊玻璃。 在设计中&#xff0c;毛玻璃风格通常…

保研面试408复习 6——计组存储器、数据结构、离散数学、特征值

文章目录 一、计组1、cache的全名、作用、映射方式和写操作的具体实现、多级cache补充&#xff1a;存储器知识 2、流水线数据冒险以及解决方式 二、数据结构1、分布式场景下&#xff0c;十个计算节点的大规模排序问题2、红黑树和B树B树的使用场景、优点、能够维护什么样的操作等…

无人机操作界面来了,起点就很高呀。

无人机操作界面设计需要考虑以下几个方面&#xff1a; 易用性&#xff1a;无人机操作界面应该简单直观&#xff0c;易于操作和理解。操作按钮和控键应该布局合理&#xff0c;易于触摸或点击。重要的操作功能应该易于找到和使用&#xff0c;避免用户迷失或困惑。实时反馈&#…

红蓝对抗提权篇之一文看懂提权

一、计算机中的权限 1.1 不同的权限系统 权限在不同的应用中有着不同的分类&#xff0c;与安全相关的大致上我们分为&#xff1a; 匿名访问权限 来宾权限 用户权限 管理员权限 系统权限 不同的权限对应的权力各不相同&#xff0c;我们对自己电脑一般是用户权限和管理员权限。…

【AI赋能】香橙派OrangePi AIpro初体验

【AI赋能】香橙派OrangePi AIpro初体验 1、初识香橙派1.1、仪式感开箱1.2、OrangePi AIpro(8T)介绍 2、上电开机2.1、开机2.2、串口调试2.2.1 两种方式登录2.2.2 相关信息 2.3、启动系统2.4、网络配置 3、连接摄像头4、目标检测4.1、Jupyter Lab模式4.2、 目标检测测试4.2.1 视…

06 FreeRTOS 互斥量(mutex)

1、互斥量的使用场景 用于保护临界资源&#xff0c;在多任务系统中&#xff0c;任务A正在使用某个资源&#xff0c;还没用完的情况下任务B也来使用的话&#xff0c;就可能导致问题。 比如对于串口&#xff0c;任务A正使用它来打印&#xff0c;在打印过程中任务B也来打印&#x…

Cobaltstrike渗透测试框架

Cobaltstrike简介 cobalt strike&#xff08;简称CS&#xff09;是一款团队作战渗透测试神器&#xff0c;分为客户端及服务端&#xff0c;一个服务端可以对应多个客户 端&#xff0c;一个客户端可以连接多个服务端&#xff0c;可被团队进行分布式协团操作. 和MSF关系 metas…

使用screw-core生成数据库结构说明文档

官方项目地址&#xff1a; screw: 简洁好用的数据库表结构文档工具&#xff0c;支持MySQL/MariaDB/SqlServer/Oracle/PostgreSQL/TIDB/CacheDB 数据库。 数据库支持 MySQL MariaDB TIDB Oracle SqlServer PostgreSQL Cache DB&#xff08;2016&#xff09; H2 &#xff08;开发…

文心智能体平台 | 想象即现实

目录 文心智能体平台介绍平台简介通过平台能做什么平台的优势智能体介绍智能体类型AI 插件介绍 动手创建一个智能体访问平台并进行账号注册根据适合的方式选择智能体类型快速创建智能体智能体个性化模块配置 总结注意事项我的智能体 文心智能体平台介绍 平台简介 文心智能体平…

产品推荐 | 基于Xilinx Zynq-7015 FPGA的MYC-C7Z015开发板

一、产品概述 基于 Xilinx Zynq-7015&#xff0c;双Cortex-A9FPGA全可编程处理器&#xff1b;PS部分(ARM)与PL部分(FPGA)之间采用AXI高速片上总线通信&#xff0c;吉比特级带宽&#xff0c;突破传统ARMFPGA架构的通信瓶颈&#xff0c;通过PL部分(FPGA)灵活配置丰富的外设接口&…