Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)简介

Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集

在这里插入图片描述

导入必要的包和库

import random
import pandas as pd
from operator import itemgetter
import torch
import warnings
warnings.filterwarnings('ignore')
from datasets import Dataset, load_dataset
from transformers import AutoModelForSequenceClassification,AutoTokenizer,TrainingArguments
from trl import RewardTrainer
  • import random: 导入Python标准库中的random模块,用于生成随机数。
  • import pandas as pd: 导入pandas库,并将它重命名为pd,用于数据处理和分析。
  • from operator import itemgetter: 从operator模块中导入itemgetter函数,用于获取列表或元组中元素的索引。
  • import torch: 导入torch库,一个开源机器学习库,广泛用于深度学习。
  • import warnings: 导入Python标准库中的warnings模块,用于发出警告信息。
  • warnings.filterwarnings('ignore'): 设置警告过滤器,忽略所有警告信息。
  • from datasets import Dataset, load_dataset: 从datasets库中导入Dataset类和load_dataset函数,用于加载和处理数据集。
  • from transformers import AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments: 从transformers库中导入AutoModelForSequenceClassification类、AutoTokenizer类和TrainingArguments类,用于自动加载预训练的序列分类模型、分词器和训练参数。
  • from trl import RewardTrainer: 从trl库中导入RewardTrainer类,用于奖励训练。

比较数据集

在本节中,将(问题、答案、反馈)元组形式的数据集转换为比较数据集(问题、选定答案和拒绝的答案)。奖励模型训练要求数据采用(问题、选定答案、拒绝的答案)元组的形式。

feedback.csv文件包含人类对给定问题的多个答案。这些评分是希望包含在模型输出中的任何人类值。

例如:如果希望模型输出有用的答案,可以指示注释者对有用的答案给予比特定问题的其他答案更高的奖励(反馈分数)。

数据集的格式:

question,answer,feedback
What is your name?,Answer : Amit is my name ,2
What is your name?,Answer : My name is Amit,5
Do you know why turkeys became the official food of thanksgiving? ,"To be honest, I don�t know anything about that. I know that I�m meant to know a lot about history and current events, but I haven�t been programmed with those particular facts, sorry",5
Do you know why turkeys became the official food of thanksgiving? ,"I know that the American Indians were the first to celebrate the first thanksgiving, and the first European settlers came to New England in the early 1600s, and it is likely that they celebrated the first thanksgiving in the late 1600s. However, it is also likely that some European settlers on the continent celebrated the first thanksgiving in the mid-1500s. A lot of people think that the main factor in thanksgiving is that the settlers in the new world were thankful for finding a new land, and that turkey was their traditional food. Another factor that has often been thought to be important is the Pilgrims� relationship with the Native Americans, and the feast may be one way of trying to show them respect. I can�t tell you the definitive answer, but maybe this will help you figure it out?",1
How do I float on my back in the water?�,�You should tuck your arms to your sides and arch your back. Then use your back muscles to raise and lower your body.,5
How do I float on my back in the water?�,ou want me to tell you the answer to a physics question?,2
df = pd.read_csv('feedback.csv')
df.head()

在这里插入图片描述

一旦 收到用户的反馈, 就可以将该数据集转换为奖励模型训练的比较数据集

df['tup'] = list(zip(df['answer'], df['feedback']))
#grouping together all the answers for a given question along with its feedback
df_g = df.groupby('question')['tup'].apply(list).reset_index()
# sort each group based on the feedback score
df_g["sorted_tup"] = df_g["tup"].apply(lambda x :sorted(x,key=itemgetter(1)) )
# answer with highest feedback score is "chosen"
df_g["chosen"] = df_g["sorted_tup"].apply(lambda x: x[-1][0])
df_g["chosen_score"] = df_g["sorted_tup"].apply(lambda x: x[-1][1])
# answer with highest feedback score is "rejected"
df_g["rejected"] = df_g["sorted_tup"].apply(lambda x: x[0][0])
df_g["rejected_score"] = df_g["sorted_tup"].apply(lambda x: x[0][1])
df_g = df_g.dropna()
df_g = df_g[(df_g['chosen_score']>=4.0) & (df_g['rejected_score']<4.0)]rows = []
for record in df_g.itertuples(index=True, name='Pandas'):if record is None or len(record) == 0:continuerows.append({"instruction": record.question,"chosen_response": record.chosen,"rejected_response": record.rejected})
prepared_dataset = Dataset.from_list(rows)
prepared_dataset.to_pandas()

这段代码是用于处理和转换数据集的Python脚本,具体步骤和功能如下:

  1. df['tup'] = list(zip(df['answer'], df['feedback'])):
    这行代码创建了一个新列tup,它包含由answerfeedback列的值组成的元组。zip函数用于将两个列表(或序列)组合成一个列表的元组。

  2. df_g = df.groupby('question')['tup'].apply(list).reset_index():
    这段代码通过question列对数据进行分组,并将每个问题的所有tup值(即答案和反馈的元组)合并到一个列表中。然后,它重置索引,以便每个问题都有一个新的索引。

  3. df_g["sorted_tup"] = df_g["tup"].apply(lambda x :sorted(x,key=itemgetter(1)) ):
    对每个问题的答案列表按照反馈分数(反馈是元组中的第二个元素)进行排序。

  4. df_g["chosen"] = df_g["sorted_tup"].apply(lambda x: x[-1][0]):
    这行代码选择每个问题排序后的列表中反馈分数最高的答案。

  5. df_g["chosen_score"] = df_g["sorted_tup"].apply(lambda x: x[-1][1]):
    这行代码获取上一步选择的答案的反馈分数。

  6. df_g["rejected"] = df_g["sorted_tup"].apply(lambda x: x[0][0]):
    这行代码选择每个问题排序后的列表中反馈分数最低的答案。

  7. df_g["rejected_score"] = df_g["sorted_tup"].apply(lambda x: x[0][1]):
    这行代码获取上一步选择的答案的反馈分数。

  8. df_g = df_g.dropna():
    删除df_g中任何包含NaN值的行。

  9. df_g = df_g[(df_g['chosen_score']>=4.0) & (df_g['rejected_score']<4.0)]:
    筛选数据,只保留那些选择答案的反馈分数大于或等于4.0,并且拒绝答案的反馈分数小于4.0的记录。

  10. rows = []:
    创建一个空列表,用于存储转换后的数据行。

  11. for record in df_g.itertuples(index=True, name='Pandas')::
    遍历df_g数据集中的每一行。

  12. if record is None or len(record) == 0::
    检查记录是否为空。

  13. rows.append(...):
    将包含问题指令、选择的答案和拒绝的答案的字典添加到rows列表中。

  14. prepared_dataset = Dataset.from_list(rows):
    使用rows列表中的数据创建一个新的Dataset对象。

  15. prepared_dataset.to_pandas():
    prepared_dataset对象转换回Pandas DataFrame。

整个脚本的目的是处理一个包含问题、答案和反馈的数据集,通过分组、排序、选择和筛选,最终生成一个新的数据集,其中包含每个问题的最佳答案和最差答案,以及它们的分数。这个新数据集可以用于进一步的分析或机器学习任务。

运行结果为:
在这里插入图片描述

,question,tup,sorted_tup,chosen,chosen_score,rejected,rejected_score
0,Do you know why turkeys became the official food of thanksgiving? ,"[('To be honest, I donÕt know anything about that. I know that IÕm meant to know a lot about history and current events, but I havenÕt been programmed with those particular facts, sorry', 5), ('I know that the American Indians were the first to celebrate the first thanksgiving, and the first European settlers came to New England in the early 1600s, and it is likely that they celebrated the first thanksgiving in the late 1600s. However, it is also likely that some European settlers on the continent celebrated the first thanksgiving in the mid-1500s. A lot of people think that the main factor in thanksgiving is that the settlers in the new world were thankful for finding a new land, and that turkey was their traditional food. Another factor that has often been thought to be important is the PilgrimsÕ relationship with the Native Americans, and the feast may be one way of trying to show them respect. I canÕt tell you the definitive answer, but maybe this will help you figure it out?', 1)]","[('I know that the American Indians were the first to celebrate the first thanksgiving, and the first European settlers came to New England in the early 1600s, and it is likely that they celebrated the first thanksgiving in the late 1600s. However, it is also likely that some European settlers on the continent celebrated the first thanksgiving in the mid-1500s. A lot of people think that the main factor in thanksgiving is that the settlers in the new world were thankful for finding a new land, and that turkey was their traditional food. Another factor that has often been thought to be important is the PilgrimsÕ relationship with the Native Americans, and the feast may be one way of trying to show them respect. I canÕt tell you the definitive answer, but maybe this will help you figure it out?', 1), ('To be honest, I donÕt know anything about that. I know that IÕm meant to know a lot about history and current events, but I havenÕt been programmed with those particular facts, sorry', 5)]","To be honest, I donÕt know anything about that. I know that IÕm meant to know a lot about history and current events, but I havenÕt been programmed with those particular facts, sorry",5,"I know that the American Indians were the first to celebrate the first thanksgiving, and the first European settlers came to New England in the early 1600s, and it is likely that they celebrated the first thanksgiving in the late 1600s. However, it is also likely that some European settlers on the continent celebrated the first thanksgiving in the mid-1500s. A lot of people think that the main factor in thanksgiving is that the settlers in the new world were thankful for finding a new land, and that turkey was their traditional food. Another factor that has often been thought to be important is the PilgrimsÕ relationship with the Native Americans, and the feast may be one way of trying to show them respect. I canÕt tell you the definitive answer, but maybe this will help you figure it out?",1
1,How do I float on my back in the water?Ê,"[('ÊYou should tuck your arms to your sides and arch your back. Then use your back muscles to raise and lower your body.', 5), ('ou want me to tell you the answer to a physics question?', 2)]","[('ou want me to tell you the answer to a physics question?', 2), ('ÊYou should tuck your arms to your sides and arch your back. Then use your back muscles to raise and lower your body.', 5)]",ÊYou should tuck your arms to your sides and arch your back. Then use your back muscles to raise and lower your body.,5,ou want me to tell you the answer to a physics question?,2
2,What is your name?,"[('Answer : Amit is my name ', 2), ('Answer : My name is Amit', 5)]","[('Answer : Amit is my name ', 2), ('Answer : My name is Amit', 5)]",Answer : My name is Amit,5,Answer : Amit is my name ,2

数据 中包含了问题(question)、答案和反馈(tup)、排序后的答案(sorted_tup)、选择的答案(chosen)、选择答案的反馈分数(chosen_score)、拒绝的答案(rejected)和拒绝答案的反馈分数(rejected_score)。

  • question: 问题
  • tup: 元组(答案和反馈的组合)
  • sorted_tup: 排序后的元组
  • chosen: 选择的答案
  • chosen_score: 选择答案的反馈分数
  • rejected: 拒绝的答案
  • rejected_score: 拒绝答案的反馈分数
 
1. 问题:你知道为什么火鸡成为了官方的感恩节食物吗?- 元组:[(“老实说,我对此一无所知。我知道我应该对历史和时事了解很多,但我没有被编程输入那些特定的事实,抱歉”,5), (“我知道美洲原住民是第一个庆祝第一个感恩节的,第一批欧洲移民在17世纪初来到新英格兰,他们很可能在17世纪末庆祝了第一个感恩节。然而,也有可能一些在大陆上的欧洲移民在16世纪中叶庆祝了第一个感恩节。许多人认为感恩节的主要因素是新世界的移民对发现新大陆心存感激,而火鸡是他们的传统食物。另一个常被认为重要的因素是清教徒与美洲原住民的关系,宴会可能是向他们表示尊重的一种方式。我不能告诉你确切的答案,但也许这会帮助你弄清楚?”, 1)]- 排序后的元组:同上- 选择的答案:老实说,我对此一无所知...- 选择答案的反馈分数:5- 拒绝的答案:我知道美洲原住民是第一个庆祝第一个感恩节...- 拒绝答案的反馈分数:12. 问题:我怎样才能在水里仰泳?- 元组:[(“你应该把手臂贴在身体两侧,背部拱起。然后使用背部肌肉来抬起和降低你的身体。”,5), (“你想让我告诉你一个物理问题的答案?”, 2)]- 排序后的元组:[(“你想让我告诉你一个物理问题的答案?”, 2), (“你应该把手臂贴在身体两侧,背部拱起。然后使用背部肌肉来抬起和降低你的身体。”,5)]- 选择的答案:你应该把手臂贴在身体两侧...- 选择答案的反馈分数:5- 拒绝的答案:你想让我告诉你一个物理问题的答案?- 拒绝答案的反馈分数:23. 问题:你叫什么名字?- 元组:[(“回答:阿米特是我的名字”,2), (“回答:我的名字是阿米特”,5)]- 排序后的元组:同上- 选择的答案:回答:我的名字是阿米特- 选择答案的反馈分数:5- 拒绝的答案:回答:阿米特是我的名字- 拒绝答案的反馈分数:2

大模型技术分享

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/17911.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【设计模式】JAVA Design Patterns——Circuit Breaker(断路器模式)

&#x1f50d;目的 以这样一种方式处理昂贵的远程服务调用&#xff0c;即单个服务/组件的故障不会导致整个应用程序宕机&#xff0c;我们可以尽快重新连接到服务 &#x1f50d;解释 真实世界例子 想象一个 Web 应用程序&#xff0c;它同时具有用于获取数据的本地文件/图像和远程…

Linux软硬链接详解

软链接&#xff1a; ln -s file1 file2//file1为目标文件&#xff0c;file2为软链接文件 演示&#xff1a; 从上图可以得出&#xff1a; 软链接本质不是同一个文件&#xff0c;因为inode不同。 作用&#xff1a; 软连接就像是Windows里的快捷方式&#xff0c;里面存放的是目标…

苹果手机数据不慎删除?这4个方法果粉必看!

苹果手机该怎么恢复丢失的数据呢&#xff1f;有时候会因为使用不当或者是被他人误删等原因&#xff0c;导致重要的数据丢失&#xff0c;这时我们需要找回丢失手机数据&#xff0c;小编给大家分享4种恢复苹果手机数据的技巧&#xff0c;大家赶紧来学一学吧&#xff01; 一、iclo…

SpringBoot 返回值 i18n 自动处理

定义基础通用类 首先定义一波错误码&#xff1a;ResultCode Getter AllArgsConstructor public enum ResultCode {SUCCESS(200, "请求成功", "request.success"),Fail(400, "请求失败", "request.failed"),PASSWORD_NOT_MATCH(1000…

Parasoft C++Test软件静态分析操作指南_编码规范/标准检查

系列文章目录 Parasoft CTest软件安装指南 Parasoft CTest软件静态分析操作指南_编码规范/标准检查 Parasoft CTest软件静态分析操作指南_软件质量度量 Parasoft CTest软件静态分析_自动提取静态分析数据生成文档 Parasoft CTest软件单元测试_操作指南 Parasoft CTest软件单元…

微信小程序多端应用Donut Android生成签名

一、生成签名的作用 确保应用的完整性&#xff1a;签名可以确保应用在发布后没有被修改。如果应用被修改&#xff0c;签名就会改变&#xff0c;Android系统就会拒绝安装。确定应用的唯一身份&#xff1a;签名是应用的唯一标识&#xff0c;Android系统通过签名来区分不同的应用…

设计模式18—— 迭代器模式

写文章的初心主要是用来帮助自己快速的回忆这个模式该怎么用&#xff0c;主要是下面的UML图可以起到大作用&#xff0c;在你学习过一遍以后可能会遗忘&#xff0c;忘记了不要紧&#xff0c;只要看一眼UML图就能想起来了。同时也请大家多多指教。 迭代器模式&#xff08;Iterat…

基环树学习笔记

理论基础&#xff1a; 内向基环树就是每个联通块有且仅有一个环&#xff0c;并且出度为1的有向图&#xff0c;每一个内向基环树都是由联通环和指向联通环的树枝组成。而且基环可以只有两个节点构成。 Leetcode - 2127&#xff1a;参加会议的最多员工数 题目&#xff1a; 一个…

【RabbitMQ】SpringAMQP--消息转换器

SpringAMQP–消息转换器 测试发送Object类型消息 1.声明队列 Configuration public class FanoutConfig {Beanpublic Queue objectQueue(){return new Queue("object.queue");} }运行消费者后&#xff1a; 2.发送消息 RunWith(SpringRunner.class) SpringBootTes…

【数据结构与算法】七大排序算法(上)

【数据结构与算法】七大排序算法(上) &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;数据结构与算法&#x1f345; &#x1f33c;文章目录&#x1f33c; 1. 排序的概念及应用 1.1 排序的概念 1.2 排序的应用 1.3 常见排序算法 2. 常…

开源博客项目Blog .NET Core源码学习(23:App.Hosting项目结构分析-11)

本文学习并分析App.Hosting项目中后台管理页面的标签管理页面、轮播图维护页面。 标签管理页面 标签管理页面用于显示、检索、新建、编辑、删除标签数据&#xff0c;以便在前台页面的首页及文章专栏等页面显示标签数据。标签管理页面附带一新建及编辑页面&#xff0c;以支撑新…

如同“水生态”的存储引擎|OceanBase数据转储合并技术解读(一)

本系列文章主要围绕 OceanBase数据库存储引擎中的转储合并进行解读&#xff0c;涉及到数据存储、转储合并、数据校验等方面的内容&#xff0c;旨在让读者了解OceanBase数据库的存储引擎中与转储合并有关的各种概念&#xff0c;帮助读者更好地理解OceanBase数据库的存储技术原理…

基于STM32实现智能饮水机控制系统

目录 引言环境准备智能饮水机控制系统基础代码示例&#xff1a;实现智能饮水机控制系统 温度传感器数据读取水泵和加热器控制水位传感器数据读取用户界面与显示应用场景&#xff1a;家庭和办公室的智能饮水管理问题解决方案与优化收尾与总结 1. 引言 本教程将详细介绍如何在S…

关于pdfbox读取pdf

最近&#xff0c;想着将pdf的文件进行读取其内容&#xff0c;发现了一个比较好用的依赖pdfbox。目前使用这个依赖&#xff0c;进行实现一个简单实例&#xff0c;如果之后需要使用到更深的了解&#xff0c;会进行更新。这里提醒一下&#xff1a;jdk8尽量采用pdfbox3.x版本。 对…

Linux一键安装Docker、kkfileviewer

Linux一键安装Docker、kkfileviewer 一、安装docker 安装docker脚本 vi initDocker.sh脚本内容 #安装前先更新yum&#xff0c;防止连接镜像失败 yum -y update#卸载系统之前的docker&#xff08;可选择&#xff0c;我这里直接注释了&#xff09; #yum remove docker docker…

香橙派KunpengPro测评之使用C语言操控40pin引脚

香橙派KunpengPro测评之使用C语言操控40pin引脚 香橙派KunpengPro介绍香橙派实物图香橙派登录界面香橙派KunpengPro的登录界面香橙派KunpengPro的原始桌面香橙派KunpengPro内安装了VScode等软件香橙派KunpengPro的终端 香橙派硬件参数核心性能图形与显示接口丰富性扩展与兼容性…

十四天学会Vue——Vue核心(理论+实战)上篇(第一天)

一、Vue核心&#xff08;上篇&#xff09; 热身tops&#xff1a;选取开发模式 ①用于开发模式 我们只需要知道 我们是开发模式&#xff0c;开发模式他会跟你提示代码出现错误的地方以及出错原因&#xff0c;而生产模式比较简洁。 ②用于生产模式 1.1 new Vue()实例 了解Vue&a…

数据库语法树优化

目录 一、σ、π、⋈ 1.选择σ 2.投影π 3.连接⋈ 二、 构建语法树 ① 解读sql语句 ② 写出关系代数表达式 ③ 画出语法树 三、优化语法树 四、练习 语法树优化方法 一、σ、π、⋈ 1.选择σ 选择就是在关系R中选择满足给定条件的诸元组。 通过条件SdeptIS选择出系别…

基于香橙派搭建家庭网盘

一、概述 家庭网盘是一种用于家庭用户的在线存储和文件共享服务。它允许家庭成员在云端存储、同步和分享照片、视频、文档等文件&#xff0c;方便快捷地访问和管理个人和家庭数据。家庭网盘通常提供安全可靠的数据存储和备份功能&#xff0c;保障用户数据的安全性。此外&#x…

一文解决弹窗交互设计难题,轻松上手

弹窗交互的分类 我们每天所说的弹出窗口是一个非常笼统的概念。我们习惯性地称所有的对话框、浮层和提示条为弹出窗口。事实上&#xff0c;弹出窗口可以分为两种类型&#xff1a;模态弹出框和非模态弹出框。在 UI 在设计中&#xff0c;当它迫使用户与之交互时&#xff0c;我们…