【神经网络结构可视化】使用 Visualkeras 可视化 Keras / TensorFlow 神经网络结构

文章目录

    • Visualkeras介绍
    • 下载安装
    • 代码示例
      • 1、导入必要的库
      • 2、创建VGG16神经网络模型
      • 3、可视化神经网络结构
      • 4、完整代码
      • 5、使用教程
    • 可视化自己创建的神经网络结构
      • 1、导入要的库
      • 2、创建自己的神经网络模型
      • 3、可视化神经网络结构图
      • 4、完整代码


Visualkeras介绍

Visualkeras是一个Python包,用于帮助可视化Keras(独立或包含在tensorflow中)神经网络架构。它允许简单的造型来满足大多数需求。该模块支持分层风格的架构生成,这对CNN(卷积神经网络)非常有用。


下载安装

Visualkeras源代码链接:https://github.com/paulgavrikov/visualkeras

使用清华源安装Visualkeras

pip install visualkeras -i https://pypi.tuna.tsinghua.edu.cn/simple

代码示例

使用CNN经典网络VGG16作为示例,可视化神经网络结构。

1、导入必要的库

from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D, InputLayer, ZeroPadding2D
from collections import defaultdict
import visualkeras
from PIL import ImageFont

2、创建VGG16神经网络模型

# create VGG16
image_size = 224
model = Sequential()
model.add(InputLayer(input_shape=(image_size, image_size, 3)))model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D())
model.add(visualkeras.SpacingDummyLayer())model.add(Flatten())model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))

3、可视化神经网络结构

# Now visualize the model!color_map = defaultdict(dict)
color_map[Conv2D]['fill'] = 'orange'
color_map[ZeroPadding2D]['fill'] = 'gray'
color_map[Dropout]['fill'] = 'pink'
color_map[MaxPooling2D]['fill'] = 'red'
color_map[Dense]['fill'] = 'green'
color_map[Flatten]['fill'] = 'teal'font = ImageFont.truetype("./Arial.ttf", 32)visualkeras.layered_view(model, to_file='./figures/vgg16.png', type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_legend.png', type_ignore=[visualkeras.SpacingDummyLayer],legend=True, font=font)
visualkeras.layered_view(model, to_file='./figures/vgg16_spacing_layers.png', spacing=0)
visualkeras.layered_view(model, to_file='./figures/vgg16_type_ignore.png',type_ignore=[ZeroPadding2D, Dropout, Flatten, visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_color_map.png',color_map=color_map, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_flat.png',draw_volume=False, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_scaling.png',scale_xy=1, scale_z=1, max_z=1000, type_ignore=[visualkeras.SpacingDummyLayer])

4、完整代码

from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D, InputLayer, ZeroPadding2D
from collections import defaultdict
import visualkeras
from PIL import ImageFont# create VGG16
image_size = 224
model = Sequential()
model.add(InputLayer(input_shape=(image_size, image_size, 3)))model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D())
model.add(visualkeras.SpacingDummyLayer())model.add(Flatten())model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))# Now visualize the model!color_map = defaultdict(dict)
color_map[Conv2D]['fill'] = 'orange'
color_map[ZeroPadding2D]['fill'] = 'gray'
color_map[Dropout]['fill'] = 'pink'
color_map[MaxPooling2D]['fill'] = 'red'
color_map[Dense]['fill'] = 'green'
color_map[Flatten]['fill'] = 'teal'font = ImageFont.truetype("./Arial.ttf", 32)visualkeras.layered_view(model, to_file='./figures/vgg16.png', type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_legend.png', type_ignore=[visualkeras.SpacingDummyLayer],legend=True, font=font)
visualkeras.layered_view(model, to_file='./figures/vgg16_spacing_layers.png', spacing=0)
visualkeras.layered_view(model, to_file='./figures/vgg16_type_ignore.png',type_ignore=[ZeroPadding2D, Dropout, Flatten, visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_color_map.png',color_map=color_map, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_flat.png',draw_volume=False, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_scaling.png',scale_xy=1, scale_z=1, max_z=1000, type_ignore=[visualkeras.SpacingDummyLayer])

5、使用教程

  • 创建一个项目文件夹(例如:Project)
  • 在创建的项目文件夹Project 中新建一个文件夹(文件夹名为 figures )
  • 通过链接(https://ultralytics.com/assets/Arial.ttf)下载 Arial.ttf 字体文件
  • 将下载的 Arial.ttf 字体文件 放在 项目文件夹Project 下
  • 在 项目文件夹Project 下新建一个py文件(如:examples.py)
  • 将上述的完整代码复制到 examples.py 中
  • 运行examples.py
  • 在 figures文件夹中查看生成的可视化图
  • vgg16.png
    在这里插入图片描述
  • vgg16_legend.png
    在这里插入图片描述

可视化自己创建的神经网络结构

1、导入要的库

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import models,layers
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Flatten, Dense
from tensorflow.keras.callbacks import Callback, ModelCheckpoint
import visualkeras

2、创建自己的神经网络模型

将以下代码替换为自己的Keras / TensorFlow 神经网络结构。

model = models.Sequential()
# 第一层卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(48, 48, 1)))  # 假设输入图像大小为48x48,1为灰度图
model.add(layers.MaxPooling2D((2, 2)))
# 第二层卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 展平层
model.add(layers.Flatten())
# 全连接层
model.add(layers.Dense(64, activation='relu'))
# 输出层,假设分类任务有7个类别
model.add(layers.Dense(7, activation='softmax'))

3、可视化神经网络结构图

显示层风格图

visualkeras.layered_view(model).show() # 只显示图
# visualkeras.layered_view(model, to_file='output.png').show() # 保存和显示图

在这里插入图片描述
显示带有标签的层风格图

from PIL import ImageFont
font = ImageFont.truetype("./Arial.ttf", 32)visualkeras.layered_view(model, legend=True, font=font).show() # 只显示图
# visualkeras.layered_view(model, to_file='output_legend.png', legend=True, font=font).show()  # 保存和显示图

在这里插入图片描述

4、完整代码

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import models,layers
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Flatten, Dense
from tensorflow.keras.callbacks import Callback, ModelCheckpoint
import visualkeras# 可以将下面这部分创建模型的代码更换你自己的神经网络结构
model = models.Sequential()
# 第一层卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(48, 48, 1)))  # 假设输入图像大小为48x48,1为灰度图
model.add(layers.MaxPooling2D((2, 2)))
# 第二层卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 展平层
model.add(layers.Flatten())
# 全连接层
model.add(layers.Dense(64, activation='relu'))
# 输出层,假设分类任务有7个类别
model.add(layers.Dense(7, activation='softmax'))visualkeras.layered_view(model).show() # 只显示图
# visualkeras.layered_view(model, to_file='output.png').show() # 保存和显示图from PIL import ImageFont
font = ImageFont.truetype("./Arial.ttf", 32)visualkeras.layered_view(model, legend=True, font=font).show() # 只显示图
# visualkeras.layered_view(model, to_file='output_legend.png', legend=True, font=font).show()  # 保存和显示图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/16124.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++代码错误解决1(函数模板)

1、代码如下 //示例函数模板的使用 #include <iostream> #include <string> using namespace std; template <typename T>//函数模板 T max(T a,T b) {return a>b?a:b; } int main() {int a,b;cout<<"input two integers to a&b:"…

【微机原理及接口技术】可编程并行接口芯片8255A

【微机原理及接口技术】可编程并行接口芯片8255A 文章目录 【微机原理及接口技术】可编程并行接口芯片8255A前言一、8255A的内部结构和引脚1.与外设接口&#xff08;数据端口&#xff09;2.与处理器接口 二、8255A的工作方式三、8255A的编程1. 写入方式控制字&#xff1a;控制字…

从0开始回顾ElasticSearch

1 elasticsearch概述 1.1 elasticsearch简介 官网: https://www.elastic.co/ ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎&#xff0c;基于RESTful web接口。Elasticsearch是用Java开发的&#xff0c;并作为Apache许可条款下的…

【动手学强化学习】第 6 章 Dyna-Q 算法知识点总结

【动手学强化学习】第 6 章 Dyna-Q 算法知识点总结 本章知识点基于模型的强化学习与无模型的强化学习方法简介无模型的强化学习方法基于模型的强化学习方法 强化学习算法的评价指标Dyna-Q算法Dyna-Q 算法的具体流程Dyna-Q 代码实践 本章知识点 基于模型的强化学习与无模型的强…

C++语言·list链表

其实现在在讲这些容器的时候&#xff0c;我们的重点已经不是它的接口都有什么&#xff0c;功能都是什么了&#xff0c;这些内容官网上都能查到&#xff0c;而且容器和容器之间接口的不同处很少&#xff0c;我在讲解的话也只是把官网上的东西截图下来复述一下。现在的重点其实都…

AtCoder Regular Contest 178 A~D

A.Good Permutation 2&#xff08;贪心&#xff09; 题意&#xff1a; 给你一个正整数 N N N和一个由 M M M个正整数 A ( A 1 , A 2 , … , A M ) A(A_{1},A_{2}, \dots,A_{M}) A(A1​,A2​,…,AM​)组成的序列。 在这里&#xff0c; A A A的所有元素都是介于 1 1 1和 N N …

【多线程】深入理解一个thread pool

我发现很多博客没有系统的分析过一个线程池&#xff0c; 那么我今天就基于这个github的小例子&#xff0c;彻底的逐行学习一下https://github.com/progschj/ThreadPool主函数调用解析&#xff1a; cpp的主函数比较简单&#xff0c; 创建了一个4个线程的线程池&#xff0c; 然后…

python中使用(.)来进行相对路径访问文件

在Python中&#xff0c;使用相对路径访问文件是一种常见的做法&#xff0c;尤其是在处理与脚本位于同一目录或附近目录的文件时。相对路径是基于当前工作目录&#xff08;CWD, Current Working Directory&#xff09;的&#xff0c;即执行Python脚本时所在的目录。 1.当前目录…

网络编程-TCP

一、TCP的相关IP 1.1 SeverSocket 这是Socket类,对应到网卡,但是这个类只能给服务器使用. 1.2 Socket 对应到网卡,既可以给服务器使用,又可以给客户端使用. TCP是面向字节流的,传输的基本单位是字节. TCP是有连接的,和打电话一样,需要客户端拨号,服务器来听. 服务器的内核…

如何保护主机的安全

因为主机的安全涉及到保护主机的数据存储和处理的保密性、完整性和可用性。但是当主机一旦被攻击者入侵&#xff0c;那么企业将会面临多种安全风险&#xff0c;比如业务被中断、服务器不稳定和数据被窃取等风险&#xff0c;那么我们该怎样保护主机的安全呢? 对于提高主机的安全…

Stream流的使用

目录 一&#xff0c;Stream流 1.1 概述 1.2 Stream代码示例 二&#xff0c;Stream流的使用 2.1 数据准备 2.2 创建流对象 2.3 中间操作 filter map distinct sorted limit skip flatMap 2.4 终结操作 foreach count max&min collect 2.5 查找与匹配 a…

redis中String,Hash类型用法与场景使用

String 用法 1. 设置键值对 &#xff08;1&#xff09;设置键值对使用 set 命令设置 key 的值。 返回值&#xff1a;ok&#xff0c;如果 key 已经存在&#xff0c;set 命令会覆盖旧值。 &#xff08;2&#xff09;使用 setex 命令设置 key 的值并为其设置过期时间&#xff…

应用爬山算法做文本数据的挖掘和分析

爬山算法是一种启发式搜索算法&#xff0c;用于求解优化问题。它从一个初始解开始&#xff0c;逐步通过比较当前解与其邻域解的优劣来选择下一个可能更优的解&#xff0c;直到达到一个局部最优解或者无法进一步改进为止。爬山算法的核心思想是“贪心”&#xff0c;即每一步都选…

安全设计 | CISA:构建不可侵犯的代码,软件安全设计的未来之路

软件制造商在产品设计和开发过程中应采取安全设计原则和方法&#xff0c;以减少网络安全风险&#xff0c;并转变责任重心&#xff0c;使产品在设计时就内置安全特性&#xff0c;而不是依赖于后期的补丁和修复。为此CISA发布了《软件安全设计的原则和方法》&#xff0c;帮助软件…

兵器室管控系统|DW-306是一套成熟系统

概述 智慧兵器室管理系统&#xff08;DW-S306&#xff09;是依托互3D技术、大数据、RFID技术、数据库技术、AI、视频分析技术对RFID智能仓库进行统一管理、分析的信息化、智能化、规范化的系统。 本解决方案利用现有内部网络&#xff0c;部署部队智能兵器室管理系统&#xff…

【Java】欸...?我学集合框架?真的假的?

【Java】欸…&#xff1f;我学集合框架&#xff1f;真的假的&#xff1f; Java集合框架 概述 Java集合框架主要由以下几个部分组成&#xff1a; 接口&#xff08;Interfaces&#xff09;&#xff1a;定义了集合的基本操作&#xff0c;如添加、删除、遍历等。实现&#xff0…

ResNet 学习

一. 残差块与残差层 简单来说&#xff0c;残差块是构成残差层的基本单元&#xff0c;而残差层则是由多个残差块组成的。在ResNet中&#xff0c;通常会堆叠多个残差层来构建深度模型。 (一).残差块&#xff08;Residual Block&#xff09; 这是ResNet的基本构建单元。一个残差块…

大语言模型的工程技巧(二)——混合精度训练

相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型&#xff1a;从线性回归到通用人工智能》&#xff0c;欢迎有兴趣的读者多多支持。 混合精度训练的示例请参考如下链接&#xff1a;regression2chatgpt/ch11_llm/gpt2_lora_optimum.ipynb 本文将讨论如何利用混合…

将本地HtmL网站打包成exe

将本地HTML网站打包成exe文件&#xff0c;可以使用工具如NW.js、Electron等。这些工具允许你将HTML、CSS和JavaScript打包成一个独立的可执行文件。下面以Electron为例&#xff0c;介绍具体步骤&#xff1a; 准备工作 安装Node.js和npm&#xff1a; Electron依赖于Node.js和np…

Java语法篇-易错

文章目录 类型转换switch case类之间关系及UMLtry catch finally 类型转换 隐式类型转换&#xff0c;不同数值类型参与计算时&#xff0c;低精度会转化为高精度参与运算 byte,short,char参与整数运算时会转成int float,int 参与浮点数运算时会转成double 强制类型转换 高精…