【神经网络结构可视化】使用 Visualkeras 可视化 Keras / TensorFlow 神经网络结构

文章目录

    • Visualkeras介绍
    • 下载安装
    • 代码示例
      • 1、导入必要的库
      • 2、创建VGG16神经网络模型
      • 3、可视化神经网络结构
      • 4、完整代码
      • 5、使用教程
    • 可视化自己创建的神经网络结构
      • 1、导入要的库
      • 2、创建自己的神经网络模型
      • 3、可视化神经网络结构图
      • 4、完整代码


Visualkeras介绍

Visualkeras是一个Python包,用于帮助可视化Keras(独立或包含在tensorflow中)神经网络架构。它允许简单的造型来满足大多数需求。该模块支持分层风格的架构生成,这对CNN(卷积神经网络)非常有用。


下载安装

Visualkeras源代码链接:https://github.com/paulgavrikov/visualkeras

使用清华源安装Visualkeras

pip install visualkeras -i https://pypi.tuna.tsinghua.edu.cn/simple

代码示例

使用CNN经典网络VGG16作为示例,可视化神经网络结构。

1、导入必要的库

from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D, InputLayer, ZeroPadding2D
from collections import defaultdict
import visualkeras
from PIL import ImageFont

2、创建VGG16神经网络模型

# create VGG16
image_size = 224
model = Sequential()
model.add(InputLayer(input_shape=(image_size, image_size, 3)))model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D())
model.add(visualkeras.SpacingDummyLayer())model.add(Flatten())model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))

3、可视化神经网络结构

# Now visualize the model!color_map = defaultdict(dict)
color_map[Conv2D]['fill'] = 'orange'
color_map[ZeroPadding2D]['fill'] = 'gray'
color_map[Dropout]['fill'] = 'pink'
color_map[MaxPooling2D]['fill'] = 'red'
color_map[Dense]['fill'] = 'green'
color_map[Flatten]['fill'] = 'teal'font = ImageFont.truetype("./Arial.ttf", 32)visualkeras.layered_view(model, to_file='./figures/vgg16.png', type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_legend.png', type_ignore=[visualkeras.SpacingDummyLayer],legend=True, font=font)
visualkeras.layered_view(model, to_file='./figures/vgg16_spacing_layers.png', spacing=0)
visualkeras.layered_view(model, to_file='./figures/vgg16_type_ignore.png',type_ignore=[ZeroPadding2D, Dropout, Flatten, visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_color_map.png',color_map=color_map, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_flat.png',draw_volume=False, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_scaling.png',scale_xy=1, scale_z=1, max_z=1000, type_ignore=[visualkeras.SpacingDummyLayer])

4、完整代码

from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D, InputLayer, ZeroPadding2D
from collections import defaultdict
import visualkeras
from PIL import ImageFont# create VGG16
image_size = 224
model = Sequential()
model.add(InputLayer(input_shape=(image_size, image_size, 3)))model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D())
model.add(visualkeras.SpacingDummyLayer())model.add(Flatten())model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))# Now visualize the model!color_map = defaultdict(dict)
color_map[Conv2D]['fill'] = 'orange'
color_map[ZeroPadding2D]['fill'] = 'gray'
color_map[Dropout]['fill'] = 'pink'
color_map[MaxPooling2D]['fill'] = 'red'
color_map[Dense]['fill'] = 'green'
color_map[Flatten]['fill'] = 'teal'font = ImageFont.truetype("./Arial.ttf", 32)visualkeras.layered_view(model, to_file='./figures/vgg16.png', type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_legend.png', type_ignore=[visualkeras.SpacingDummyLayer],legend=True, font=font)
visualkeras.layered_view(model, to_file='./figures/vgg16_spacing_layers.png', spacing=0)
visualkeras.layered_view(model, to_file='./figures/vgg16_type_ignore.png',type_ignore=[ZeroPadding2D, Dropout, Flatten, visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_color_map.png',color_map=color_map, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_flat.png',draw_volume=False, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_scaling.png',scale_xy=1, scale_z=1, max_z=1000, type_ignore=[visualkeras.SpacingDummyLayer])

5、使用教程

  • 创建一个项目文件夹(例如:Project)
  • 在创建的项目文件夹Project 中新建一个文件夹(文件夹名为 figures )
  • 通过链接(https://ultralytics.com/assets/Arial.ttf)下载 Arial.ttf 字体文件
  • 将下载的 Arial.ttf 字体文件 放在 项目文件夹Project 下
  • 在 项目文件夹Project 下新建一个py文件(如:examples.py)
  • 将上述的完整代码复制到 examples.py 中
  • 运行examples.py
  • 在 figures文件夹中查看生成的可视化图
  • vgg16.png
    在这里插入图片描述
  • vgg16_legend.png
    在这里插入图片描述

可视化自己创建的神经网络结构

1、导入要的库

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import models,layers
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Flatten, Dense
from tensorflow.keras.callbacks import Callback, ModelCheckpoint
import visualkeras

2、创建自己的神经网络模型

将以下代码替换为自己的Keras / TensorFlow 神经网络结构。

model = models.Sequential()
# 第一层卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(48, 48, 1)))  # 假设输入图像大小为48x48,1为灰度图
model.add(layers.MaxPooling2D((2, 2)))
# 第二层卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 展平层
model.add(layers.Flatten())
# 全连接层
model.add(layers.Dense(64, activation='relu'))
# 输出层,假设分类任务有7个类别
model.add(layers.Dense(7, activation='softmax'))

3、可视化神经网络结构图

显示层风格图

visualkeras.layered_view(model).show() # 只显示图
# visualkeras.layered_view(model, to_file='output.png').show() # 保存和显示图

在这里插入图片描述
显示带有标签的层风格图

from PIL import ImageFont
font = ImageFont.truetype("./Arial.ttf", 32)visualkeras.layered_view(model, legend=True, font=font).show() # 只显示图
# visualkeras.layered_view(model, to_file='output_legend.png', legend=True, font=font).show()  # 保存和显示图

在这里插入图片描述

4、完整代码

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import models,layers
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Flatten, Dense
from tensorflow.keras.callbacks import Callback, ModelCheckpoint
import visualkeras# 可以将下面这部分创建模型的代码更换你自己的神经网络结构
model = models.Sequential()
# 第一层卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(48, 48, 1)))  # 假设输入图像大小为48x48,1为灰度图
model.add(layers.MaxPooling2D((2, 2)))
# 第二层卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 展平层
model.add(layers.Flatten())
# 全连接层
model.add(layers.Dense(64, activation='relu'))
# 输出层,假设分类任务有7个类别
model.add(layers.Dense(7, activation='softmax'))visualkeras.layered_view(model).show() # 只显示图
# visualkeras.layered_view(model, to_file='output.png').show() # 保存和显示图from PIL import ImageFont
font = ImageFont.truetype("./Arial.ttf", 32)visualkeras.layered_view(model, legend=True, font=font).show() # 只显示图
# visualkeras.layered_view(model, to_file='output_legend.png', legend=True, font=font).show()  # 保存和显示图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/16124.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++代码错误解决1(函数模板)

1、代码如下 //示例函数模板的使用 #include <iostream> #include <string> using namespace std; template <typename T>//函数模板 T max(T a,T b) {return a>b?a:b; } int main() {int a,b;cout<<"input two integers to a&b:"…

【微机原理及接口技术】可编程并行接口芯片8255A

【微机原理及接口技术】可编程并行接口芯片8255A 文章目录 【微机原理及接口技术】可编程并行接口芯片8255A前言一、8255A的内部结构和引脚1.与外设接口&#xff08;数据端口&#xff09;2.与处理器接口 二、8255A的工作方式三、8255A的编程1. 写入方式控制字&#xff1a;控制字…

从0开始回顾ElasticSearch

1 elasticsearch概述 1.1 elasticsearch简介 官网: https://www.elastic.co/ ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎&#xff0c;基于RESTful web接口。Elasticsearch是用Java开发的&#xff0c;并作为Apache许可条款下的…

【动手学强化学习】第 6 章 Dyna-Q 算法知识点总结

【动手学强化学习】第 6 章 Dyna-Q 算法知识点总结 本章知识点基于模型的强化学习与无模型的强化学习方法简介无模型的强化学习方法基于模型的强化学习方法 强化学习算法的评价指标Dyna-Q算法Dyna-Q 算法的具体流程Dyna-Q 代码实践 本章知识点 基于模型的强化学习与无模型的强…

C++语言·list链表

其实现在在讲这些容器的时候&#xff0c;我们的重点已经不是它的接口都有什么&#xff0c;功能都是什么了&#xff0c;这些内容官网上都能查到&#xff0c;而且容器和容器之间接口的不同处很少&#xff0c;我在讲解的话也只是把官网上的东西截图下来复述一下。现在的重点其实都…

AtCoder Regular Contest 178 A~D

A.Good Permutation 2&#xff08;贪心&#xff09; 题意&#xff1a; 给你一个正整数 N N N和一个由 M M M个正整数 A ( A 1 , A 2 , … , A M ) A(A_{1},A_{2}, \dots,A_{M}) A(A1​,A2​,…,AM​)组成的序列。 在这里&#xff0c; A A A的所有元素都是介于 1 1 1和 N N …

网络编程-TCP

一、TCP的相关IP 1.1 SeverSocket 这是Socket类,对应到网卡,但是这个类只能给服务器使用. 1.2 Socket 对应到网卡,既可以给服务器使用,又可以给客户端使用. TCP是面向字节流的,传输的基本单位是字节. TCP是有连接的,和打电话一样,需要客户端拨号,服务器来听. 服务器的内核…

Stream流的使用

目录 一&#xff0c;Stream流 1.1 概述 1.2 Stream代码示例 二&#xff0c;Stream流的使用 2.1 数据准备 2.2 创建流对象 2.3 中间操作 filter map distinct sorted limit skip flatMap 2.4 终结操作 foreach count max&min collect 2.5 查找与匹配 a…

redis中String,Hash类型用法与场景使用

String 用法 1. 设置键值对 &#xff08;1&#xff09;设置键值对使用 set 命令设置 key 的值。 返回值&#xff1a;ok&#xff0c;如果 key 已经存在&#xff0c;set 命令会覆盖旧值。 &#xff08;2&#xff09;使用 setex 命令设置 key 的值并为其设置过期时间&#xff…

安全设计 | CISA:构建不可侵犯的代码,软件安全设计的未来之路

软件制造商在产品设计和开发过程中应采取安全设计原则和方法&#xff0c;以减少网络安全风险&#xff0c;并转变责任重心&#xff0c;使产品在设计时就内置安全特性&#xff0c;而不是依赖于后期的补丁和修复。为此CISA发布了《软件安全设计的原则和方法》&#xff0c;帮助软件…

兵器室管控系统|DW-306是一套成熟系统

概述 智慧兵器室管理系统&#xff08;DW-S306&#xff09;是依托互3D技术、大数据、RFID技术、数据库技术、AI、视频分析技术对RFID智能仓库进行统一管理、分析的信息化、智能化、规范化的系统。 本解决方案利用现有内部网络&#xff0c;部署部队智能兵器室管理系统&#xff…

【Java】欸...?我学集合框架?真的假的?

【Java】欸…&#xff1f;我学集合框架&#xff1f;真的假的&#xff1f; Java集合框架 概述 Java集合框架主要由以下几个部分组成&#xff1a; 接口&#xff08;Interfaces&#xff09;&#xff1a;定义了集合的基本操作&#xff0c;如添加、删除、遍历等。实现&#xff0…

大语言模型的工程技巧(二)——混合精度训练

相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型&#xff1a;从线性回归到通用人工智能》&#xff0c;欢迎有兴趣的读者多多支持。 混合精度训练的示例请参考如下链接&#xff1a;regression2chatgpt/ch11_llm/gpt2_lora_optimum.ipynb 本文将讨论如何利用混合…

Java语法篇-易错

文章目录 类型转换switch case类之间关系及UMLtry catch finally 类型转换 隐式类型转换&#xff0c;不同数值类型参与计算时&#xff0c;低精度会转化为高精度参与运算 byte,short,char参与整数运算时会转成int float,int 参与浮点数运算时会转成double 强制类型转换 高精…

数据结构 —— 栈 与 队列

1.栈 1.1栈的结构和概念 栈&#xff08;Stack&#xff09;是一种特殊的线性数据结构&#xff0c;它遵循后进先出&#xff08;LIFO&#xff0c;Last In First Out&#xff09;的原则。栈只允许在一端插入和删除数据&#xff0c;这一端被称为栈顶&#xff08;top&#xff09;&a…

c++引用和内联函数

一、引用 1.引用概念 引用不是新定义一个变量&#xff0c;而是给已存在变量取了一个别名&#xff0c;编译器不会为引用变量开辟内存空 间&#xff0c;它和它引用的变量共用同一块内存空间。&#xff08;引用类型必须和引用实体是同种类型的&#xff09;&#xff0c;如&#x…

MySQL--联合索引应用细节应用规范

目录 一、索引覆盖 1.完全覆盖 2.部分覆盖 3.不覆盖索引-where条件不包含联合索引的最左则不覆盖 二、MySQL8.0在索引中的新特性 1.不可见索引 2.倒序索引 三、索引自优化--索引的索引 四、Change Buffer 五、优化器算法 1.查询优化器算法 2.设置算法 3.索引下推 …

2024年NGFW防火墙安全基准-防火墙安全功效竞争性评估实验室总结报告

Check Point 委托 Miercom 对 Check Point 下一代防火墙 (NGFW) 开展竞争性安全有效性测试&#xff0c; 选择的竞品分别来自 Cisco、Fortinet 和 Palo Alto Networks。对 Zscaler 的测试涉及他们的 SWG&#xff08;安全网关&#xff09;。测试内容包括验证防病毒、反恶意软件、…

SpringBoot+Vue开发记录(六)-- 后端配置mybatis

原型图什么的就先不管&#xff0c;后面再写。 本篇文章的主要内容就是springboot通过mybatis操作数据库实现增删改查。 重点是mybatis配置与相关文件数据&#xff0c;以后开新项目忘记了怎么配置的话可以再照着这个搞。 这算是最基础的部分了吧。 文章目录 一&#xff0c;配置…

基于STM32的自动宠物喂食器的Proteus仿真

文章目录 一、宠物喂食器1.题目要求2.思路2.1 OLED显示汉字2.2 DS1302模块2.3 液位传感器2.4 压力传感器和步进电机驱动 3.仿真图3.1 未仿真时3.2 开始仿真&#xff0c;OLED初始界面显示实时时间3.3 通过设置按键进入模式选择和喂食时间设置3.4 进入喂食时间设置3.5 设置好喂食…