基于Pytorch深度学习神经网络MNIST手写数字识别系统源码(带界面和手写画板)

 第一步:准备数据

mnist开源数据集

第二步:搭建模型

我们这里搭建了一个LeNet5网络

参考代码如下:

import torch
from torch import nnclass Reshape(nn.Module):def forward(self, x):return x.view(-1, 1, 28, 28)class LeNet5(nn.Module):def __init__(self):super(LeNet5, self).__init__()self.net = nn.Sequential(Reshape(),# CONV1, ReLU1, POOL1nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2),# nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2),# CONV2, ReLU2, POOL2nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2),nn.Flatten(),# FC1nn.Linear(in_features=16 * 5 * 5, out_features=120),nn.ReLU(),# FC2nn.Linear(in_features=120, out_features=84),nn.ReLU(),# FC3nn.Linear(in_features=84, out_features=10))# 添加softmax层self.softmax = nn.Softmax()def forward(self, x):logits = self.net(x)# 将logits转为概率prob = self.softmax(logits)return probif __name__ == '__main__':model = LeNet5()X = torch.rand(size=(256, 1, 28, 28), dtype=torch.float32)for layer in model.net:X = layer(X)print(layer.__class__.__name__, '\toutput shape: \t', X.shape)X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)print(model(X))

第三步:训练代码

import torch
from torch import nn
from torchvision import datasets
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoaderfrom model import LeNet5# DATASET
train_data = datasets.MNIST(root='./data',train=False,download=True,transform=ToTensor()
)test_data = datasets.MNIST(root='./data',train=False,download=True,transform=ToTensor()
)# PREPROCESS
batch_size = 256
train_dataloader = DataLoader(dataset=train_data, batch_size=batch_size)
test_dataloader = DataLoader(dataset=test_data, batch_size=batch_size)
for X, y in train_dataloader:print(X.shape)		# torch.Size([256, 1, 28, 28])print(y.shape)		# torch.Size([256])break# MODEL
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = LeNet5().to(device)# TRAIN MODEL
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=model.parameters())def train(dataloader, model, loss_func, optimizer, epoch):model.train()data_size = len(dataloader.dataset)for batch, (X, y) in enumerate(dataloader):X, y = X.to(device), y.to(device)y_hat = model(X)loss = loss_func(y_hat, y)optimizer.zero_grad()loss.backward()optimizer.step()loss, current = loss.item(), batch * len(X)print(f'EPOCH{epoch+1}\tloss: {loss:>7f}', end='\t')# Test model
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss, correct = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_fn(pred, y).item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss /= num_batchescorrect /= sizeprint(f'Test Error: Accuracy: {(100 * correct):>0.1f}%, Average loss: {test_loss:>8f}\n')if __name__ == '__main__':epoches = 80for epoch in range(epoches):train(train_dataloader, model, loss_func, optimizer, epoch)test(test_dataloader, model, loss_func)# Save modelstorch.save(model.state_dict(), 'model.pth')print('Saved PyTorch LeNet5 State to model.pth')

第四步:统计训练过程

EPOCH1	loss: 1.908403	Test Error: Accuracy: 58.3%, Average loss: 1.943602EPOCH2	loss: 1.776060	Test Error: Accuracy: 72.2%, Average loss: 1.750917EPOCH3	loss: 1.717706	Test Error: Accuracy: 73.6%, Average loss: 1.730332EPOCH4	loss: 1.719344	Test Error: Accuracy: 76.0%, Average loss: 1.703456EPOCH5	loss: 1.659312	Test Error: Accuracy: 76.6%, Average loss: 1.694500EPOCH6	loss: 1.647946	Test Error: Accuracy: 76.9%, Average loss: 1.691286EPOCH7	loss: 1.653712	Test Error: Accuracy: 77.0%, Average loss: 1.690819EPOCH8	loss: 1.653270	Test Error: Accuracy: 76.8%, Average loss: 1.692459EPOCH9	loss: 1.649021	Test Error: Accuracy: 77.5%, Average loss: 1.686158EPOCH10	loss: 1.648204	Test Error: Accuracy: 78.3%, Average loss: 1.678802EPOCH11	loss: 1.647159	Test Error: Accuracy: 78.4%, Average loss: 1.676133EPOCH12	loss: 1.647390	Test Error: Accuracy: 78.6%, Average loss: 1.674455EPOCH13	loss: 1.646807	Test Error: Accuracy: 78.4%, Average loss: 1.675752EPOCH14	loss: 1.630824	Test Error: Accuracy: 79.1%, Average loss: 1.668470EPOCH15	loss: 1.524222	Test Error: Accuracy: 86.3%, Average loss: 1.599240EPOCH16	loss: 1.524022	Test Error: Accuracy: 86.7%, Average loss: 1.594947EPOCH17	loss: 1.524296	Test Error: Accuracy: 87.1%, Average loss: 1.588946EPOCH18	loss: 1.523599	Test Error: Accuracy: 87.3%, Average loss: 1.588275EPOCH19	loss: 1.523655	Test Error: Accuracy: 87.5%, Average loss: 1.586576EPOCH20	loss: 1.523659	Test Error: Accuracy: 88.2%, Average loss: 1.579286EPOCH21	loss: 1.523733	Test Error: Accuracy: 87.9%, Average loss: 1.582472EPOCH22	loss: 1.523748	Test Error: Accuracy: 88.2%, Average loss: 1.578699EPOCH23	loss: 1.523788	Test Error: Accuracy: 88.0%, Average loss: 1.579700EPOCH24	loss: 1.523708	Test Error: Accuracy: 88.1%, Average loss: 1.579758EPOCH25	loss: 1.523683	Test Error: Accuracy: 88.4%, Average loss: 1.575913EPOCH26	loss: 1.523646	Test Error: Accuracy: 88.7%, Average loss: 1.572831EPOCH27	loss: 1.523654	Test Error: Accuracy: 88.9%, Average loss: 1.570528EPOCH28	loss: 1.523642	Test Error: Accuracy: 89.0%, Average loss: 1.570223EPOCH29	loss: 1.523663	Test Error: Accuracy: 89.0%, Average loss: 1.570385EPOCH30	loss: 1.523658	Test Error: Accuracy: 88.9%, Average loss: 1.571195EPOCH31	loss: 1.523653	Test Error: Accuracy: 88.4%, Average loss: 1.575981EPOCH32	loss: 1.523653	Test Error: Accuracy: 89.0%, Average loss: 1.570087EPOCH33	loss: 1.523642	Test Error: Accuracy: 88.9%, Average loss: 1.571018EPOCH34	loss: 1.523649	Test Error: Accuracy: 89.0%, Average loss: 1.570439EPOCH35	loss: 1.523629	Test Error: Accuracy: 90.4%, Average loss: 1.555473EPOCH36	loss: 1.461187	Test Error: Accuracy: 97.1%, Average loss: 1.491042EPOCH37	loss: 1.461230	Test Error: Accuracy: 97.7%, Average loss: 1.485049EPOCH38	loss: 1.461184	Test Error: Accuracy: 97.7%, Average loss: 1.485653EPOCH39	loss: 1.461156	Test Error: Accuracy: 98.2%, Average loss: 1.479966EPOCH40	loss: 1.461335	Test Error: Accuracy: 98.2%, Average loss: 1.479197EPOCH41	loss: 1.461152	Test Error: Accuracy: 98.7%, Average loss: 1.475477EPOCH42	loss: 1.461153	Test Error: Accuracy: 98.7%, Average loss: 1.475124EPOCH43	loss: 1.461153	Test Error: Accuracy: 98.9%, Average loss: 1.472885EPOCH44	loss: 1.461151	Test Error: Accuracy: 99.1%, Average loss: 1.470957EPOCH45	loss: 1.461156	Test Error: Accuracy: 99.1%, Average loss: 1.471141EPOCH46	loss: 1.461152	Test Error: Accuracy: 99.1%, Average loss: 1.470793EPOCH47	loss: 1.461151	Test Error: Accuracy: 98.8%, Average loss: 1.474548EPOCH48	loss: 1.461151	Test Error: Accuracy: 99.1%, Average loss: 1.470666EPOCH49	loss: 1.461151	Test Error: Accuracy: 99.1%, Average loss: 1.471546EPOCH50	loss: 1.461151	Test Error: Accuracy: 99.0%, Average loss: 1.471407EPOCH51	loss: 1.461151	Test Error: Accuracy: 98.8%, Average loss: 1.473795EPOCH52	loss: 1.461164	Test Error: Accuracy: 98.2%, Average loss: 1.480009EPOCH53	loss: 1.461151	Test Error: Accuracy: 99.2%, Average loss: 1.469931EPOCH54	loss: 1.461152	Test Error: Accuracy: 99.2%, Average loss: 1.469916EPOCH55	loss: 1.461151	Test Error: Accuracy: 98.9%, Average loss: 1.472574EPOCH56	loss: 1.461151	Test Error: Accuracy: 98.6%, Average loss: 1.476035EPOCH57	loss: 1.461151	Test Error: Accuracy: 98.2%, Average loss: 1.478933EPOCH58	loss: 1.461150	Test Error: Accuracy: 99.4%, Average loss: 1.468186EPOCH59	loss: 1.461151	Test Error: Accuracy: 99.4%, Average loss: 1.467602EPOCH60	loss: 1.461151	Test Error: Accuracy: 99.1%, Average loss: 1.471206EPOCH61	loss: 1.461151	Test Error: Accuracy: 98.8%, Average loss: 1.473356EPOCH62	loss: 1.461151	Test Error: Accuracy: 99.2%, Average loss: 1.470242EPOCH63	loss: 1.461150	Test Error: Accuracy: 99.1%, Average loss: 1.470826EPOCH64	loss: 1.461151	Test Error: Accuracy: 98.7%, Average loss: 1.474476EPOCH65	loss: 1.461150	Test Error: Accuracy: 99.3%, Average loss: 1.469116EPOCH66	loss: 1.461150	Test Error: Accuracy: 99.4%, Average loss: 1.467823EPOCH67	loss: 1.461150	Test Error: Accuracy: 99.5%, Average loss: 1.466486EPOCH68	loss: 1.461152	Test Error: Accuracy: 99.3%, Average loss: 1.468688EPOCH69	loss: 1.461150	Test Error: Accuracy: 99.5%, Average loss: 1.466256EPOCH70	loss: 1.461150	Test Error: Accuracy: 99.5%, Average loss: 1.466588EPOCH71	loss: 1.461150	Test Error: Accuracy: 99.6%, Average loss: 1.465280EPOCH72	loss: 1.461150	Test Error: Accuracy: 99.4%, Average loss: 1.467110EPOCH73	loss: 1.461151	Test Error: Accuracy: 99.6%, Average loss: 1.465245EPOCH74	loss: 1.461150	Test Error: Accuracy: 99.5%, Average loss: 1.466551EPOCH75	loss: 1.461150	Test Error: Accuracy: 99.5%, Average loss: 1.466001EPOCH76	loss: 1.461150	Test Error: Accuracy: 99.3%, Average loss: 1.468074EPOCH77	loss: 1.461151	Test Error: Accuracy: 99.6%, Average loss: 1.465709EPOCH78	loss: 1.461150	Test Error: Accuracy: 99.5%, Average loss: 1.466567EPOCH79	loss: 1.461150	Test Error: Accuracy: 99.6%, Average loss: 1.464922EPOCH80	loss: 1.461150	Test Error: Accuracy: 99.6%, Average loss: 1.465109

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码,主要使用方法可以参考里面的“文档说明_必看.docx”

 代码的下载路径(新窗口打开链接)基于Pytorch深度学习神经网络MNIST手写数字识别系统源码(带界面和手写画板)

有问题可以私信或者留言,有问必答

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/13038.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】C++语言实现二叉树的介绍及堆的实现(详细解读)

c语言中的小小白-CSDN博客c语言中的小小白关注算法,c,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm1001.2014.3001.5343 给大家分享一句我很喜欢我话: 知不足而奋进,望远山而前行&am…

分布式系统的一致性与共识算法(三)

顺序一致性(Sequential Consistency) ZooKeeper 一种说法是ZooKeeper是最终一致性,因为由于多副本、以及保证大多数成功的ZAB协议,当一个客户端进程写入一个新值,另外一个客户端进程不能保证马上就能读到这个值,但是能保证最终能…

我的第一个网页:武理天协

1. html代码 1.1 首页.html <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><title>武理天协</title><link rel"stylesheet" href"./style.css"><link rel"stylesh…

【车载开发系列】SID$11服务配置

【车载开发系列】SID$11服务配置 前言 ECUReset(ECU重置),ECU作为Server端,执行Client发送来ECU Reset请求中重启的类型(通过子服务区分)。对于UDS协议关于处理该请求的逻辑,没有强制性定义。 Step1:SID和SubFunction的追加 BasicEditor→Dcm→DcmConfigSet→DcmDs…

vs2019 c++里用 typeid() . name () 与 typeid() . raw_name () 测试数据类型的区别

&#xff08;1&#xff09; 都知道&#xff0c;在 vs2019 里用 typeid 打印的类型不大准&#xff0c;会主动去掉一些修饰符&#xff0c; const 和引用 修饰符会被去掉。但也可以给咱们验证学到的代码知识提供一些参考。那么今天发现其还有 raw_name 成员函数&#xff0c;这个函…

AES分组密码

一、AES明文和密钥位数 RIJNDAEL 算法数据块长度和密钥长度都可独立地选定为大于等于 128 位且小于等于 256 位的 32 位的任意倍数。 而美国颁布 AES 时却规定数据块的长度为 128 位、密钥的长度可分别选择为 128 位&#xff0c; 192 位或 256 位 1.1 状态 中间结果叫做状态…

建模:3dmax

3Dmax 制作模型和动画&#xff08;橘肉&#xff09;&#xff1b; RizomUV 对模型进行展UV&#xff08;橘皮&#xff09;&#xff1b; Substance Painter 纹理手绘&#xff08;给橘皮制定想要的皮肤&#xff09;&#xff1b; 1.基础 1.1可编辑多边形、可编辑样条线 体、面都需要…

Polylang Pro插件下载:多语言网站构建的终极解决方案

在全球化的今天&#xff0c;多语言网站已成为企业拓展国际市场的重要工具。然而&#xff0c;创建和管理一个多语言网站并非易事。幸运的是&#xff0c;Polylang Pro插件的出现&#xff0c;为WordPress用户提供了一个强大的多语言解决方案。本文将深入探讨Polylang Pro插件的功能…

linux上git 使用方法

一、git上新建仓库 在git上新建仓库&#xff0c;并命名 二、本地初始化 //命令行 ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" //ssh查看 cd /root/.ssh/ vim rsa.pub //复制后粘贴进git网页设置里的ssh key //测试设置是否成功 ssh -T gitgithub.com/…

暴力数据结构之二叉树(堆的相关知识)

1. 堆的基本了解 堆&#xff08;heap&#xff09;是计算机科学中一种特殊的数据结构&#xff0c;通常被视为一个完全二叉树&#xff0c;并且可以用数组来存储。堆的主要应用是在一组变化频繁&#xff08;增删查改的频率较高&#xff09;的数据集中查找最值。堆分为大根堆和小根…

Spring事务的实现原理

Spring事务原理 Spring框架支持对于事务的管理功能&#xff0c;开发人员使用Spring框架能极大的简化对于数据库事务的管理操作&#xff0c;不必进行手动开启事务&#xff0c;提交事务&#xff0c;回滚事务&#xff0c;就是在配置文件或者项目的启动类配置Spring事务相关的注解…

什么是最大路径?什么是极大路径?

最近学习中&#xff0c;在这两个概念上出现了混淆&#xff0c;导致了一些误解&#xff0c;在此厘清。 最大路径 在一个简单图G中&#xff0c;u、v之间的距离 d ( u , v ) min ⁡ { u 到 v 的最短路的长度 } d(u,v) \min \{ u到v的最短路的长度 \} d(u,v)min{u到v的最短路的…

wefaf

c语言中的小小白-CSDN博客c语言中的小小白关注算法,c,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm1001.2014.3001.5343 给大家分享一句我很喜欢我话&#xff1a; 知不足而奋进&#xff0c;望远山而前行&am…

使用Bash脚本和Logrotate实现Nginx日志切割

Nginx是一个广泛使用的高性能Web服务器&#xff0c;它能够处理大量的并发连接&#xff0c;但同时也会生成大量的日志文件。为了有效管理这些日志文件并确保系统的正常运行&#xff0c;我们需要定期对Nginx的日志文件进行切割和归档。本文将介绍如何使用Bash脚本和Logrotate来实…

每天Get一个小技巧:用DolphinScheduler实现隔几天调度

转载自tuoluzhe8521 这篇小短文将教会你如何使用Apache DolphinScheduler实现隔几天调度&#xff0c;有此需求的小伙伴学起来&#xff01; 1 场景分析 DolphinScheduler定时器模块-定时调度时每3秒|每3分钟|每3天这种定时&#xff0c;不能够跨分钟&#xff0c;跨小时&#x…

【C++】:string类的基本使用

目录 引言一&#xff0c;string类对象的常见构造二&#xff0c;string类对象的容量操作三&#xff0c;string类对象的访问及遍历操作四&#xff0c;string类对象的修改操作五&#xff0c;string类非成员函数六&#xff0c;整形与字符串的转换 引言 string 就是我们常说的"…

如何对SQL Server中的敏感数据进行加密解密?

为什么需要对敏感数据进行加密&#xff1f; 近几年有不少关于个人数据泄露的新闻&#xff08;个人数据通常包含如姓名、地址、身份证号码、财务信息等&#xff09;&#xff0c;给事发公司和被泄露人都带来了不小的影响。 许多国家和地区都出台了个人数据保护的法律法规&#…

Unity Animation--动画窗口指南(使用动画视图)

Unity Animation--动画窗口指南&#xff08;使用动画视图&#xff09; 使用动画视图 window -> Animation 即可打开窗口 查看GameObject上的动画 window -> Animation -> Animation 默认快捷键 Ctrl 6 动画属性列表 在下面的图像中&#xff0c;“动画”视图&am…

思科模拟器--2.静态路由和默认路由配置24.5.15

首先&#xff0c;创建三个路由器和两个个人电脑。 接着&#xff0c;配置两台电脑的IP&#xff0c;子网掩码和默认网关 对Router 0&#xff0c;进行以下命令&#xff1a; 对Router进行以下命令&#xff1a; 对Router2进行以下命令&#xff1a; 本实验完成。 验证&#xff1a;PC…

Vue3+ts(day06:路由)

学习源码可以看我的个人前端学习笔记 (github.com):qdxzw/frontlearningNotes 觉得有帮助的同学&#xff0c;可以点心心支持一下哈&#xff08;笔记是根据b站上学习的尚硅谷的前端视频【张天禹老师】&#xff0c;记录一下学习笔记&#xff0c;用于自己复盘&#xff0c;有需要学…