1.题目
import gmpy2
from Crypto.Util.number import *
from flag import flag
assert flag.startswith(b"flag{")
assert flag.endswith(b"}")
message=bytes_to_long(flag)
def keygen(nbit, dbit):if 2*dbit < nbit:while True:a1 = getRandomNBitInteger(dbit)b1 = getRandomNBitInteger(nbit//2-dbit)n1 = a1*b1+1if isPrime(n1):breakwhile True:a2 = getRandomNBitInteger(dbit)b2 = getRandomNBitInteger(nbit//2-dbit)n2=a2*b2+1n3=a1*b2+1if isPrime(n2) and isPrime(n3):breakwhile True:a3=getRandomNBitInteger(dbit)if gmpy2.gcd(a3,a1*b1*a2*b2)==1:v1=(n1-1)*(n2-1) # phi1k=(a3*inverse(a3,v1)-1)//v1 # k * phi1=k * v1 = ed-1v2=k*b1+1if isPrime(v2):return a3,n1*n2,n3*v2
def encrypt(msg, pubkey):return pow(msg, pubkey[0], pubkey[1])nbit = 1024
dbit = 256
e, n1, n2=keygen(nbit, dbit)
print('e =', e)
print('n1 =', n1)
print('n2 =', n2)
c1 = encrypt(message, [e, n1])
c2 = encrypt(message, [e, n2])
print('enc1 =', c1)
print('enc2 =', c2)
# e = 86905291018330218127760596324522274547253465551209634052618098249596388694529
# n1 = 112187114035595515717020336420063560192608507634951355884730277020103272516595827630685773552014888608894587055283796519554267693654102295681730016199369580577243573496236556117934113361938190726830349853086562389955289707685145472794173966128519654167325961312446648312096211985486925702789773780669802574893
# n2 = 95727255683184071257205119413595957528984743590073248708202176413951084648626277198841459757379712896901385049813671642628441940941434989886894512089336243796745883128585743868974053010151180059532129088434348142499209024860189145032192068409977856355513219728891104598071910465809354419035148873624856313067
# enc1 = 71281698683006229705169274763783817580572445422844810406739630520060179171191882439102256990860101502686218994669784245358102850927955191225903171777969259480990566718683951421349181856119965365618782630111357309280954558872160237158905739584091706635219142133906953305905313538806862536551652537126291478865
# enc2 = 7333744583943012697651917897083326988621572932105018877567461023651527927346658805965099102481100945100738540533077677296823678241143375320240933128613487693799458418017975152399878829426141218077564669468040331339428477336144493624090728897185260894290517440392720900787100373142671471448913212103518035775
2.分析
注意各个数据的生成:
n1 = a1*b1 + 1
n2 = a2*b2 + 1
n3 = a1*b2 + 1
N1 = n1*n2
N2 = n3*v2
v1 = phi(n1*n2)=phi(N1)
k*v1 = ed - 1
v2 = k*b1+1
e = a3
bit_length 1024: v1, d,N1,N2
bit_length 512:n1,n2,n3
bit_length256:a1,b1,a2,b2,a3,k
由于N1,N2已经给出,我们仔细观察这两个数怎么使用,
注意到:
N1 = (a1*b1 + 1)*(a2*b2 + 1)
N2 = (a1*b2 + 1) * (k*b1 + 1)
所以
可以考虑使用连分数获取k,a2
接下来,注意到:
然后有了模数和余数后我们就可以使用CRT求解v1了
但是这一题中观察e(=a3)、a2的生成方式,我们知道e和a3可能是不互素的,所以CRT得到的结果应该是模LCM(e,a2)下的结果,而可能不是模e*a2下的结果,所以我们需要进行一定量的破解
记我们得到的结果是v1',则v1'与v1之间存在以下关系:
v1 = lcm(a3, a2)*t + v1'
v1 = N1 -(n1 + n2) + 1
推出:
所以我们从上式右边向下爆破即可
3.解题
1.获取k,a2
from Crypto.Util.number import *
from sympy.ntheory.modular import crtdef continuedFra(x, y):cF = []while y:cF += [x // y]x, y = y, x % yreturn cFdef Simplify(ctnf):numerator = 0denominator = 1for x in ctnf[::-1]:numerator, denominator = denominator, x * denominator + numeratorreturn (numerator, denominator)def getit(c):cf = []for i in range(1, len(c)):cf.append(Simplify(c[:i]))return cfN1 = 112187114035595515717020336420063560192608507634951355884730277020103272516595827630685773552014888608894587055283796519554267693654102295681730016199369580577243573496236556117934113361938190726830349853086562389955289707685145472794173966128519654167325961312446648312096211985486925702789773780669802574893
N2 = 95727255683184071257205119413595957528984743590073248708202176413951084648626277198841459757379712896901385049813671642628441940941434989886894512089336243796745883128585743868974053010151180059532129088434348142499209024860189145032192068409977856355513219728891104598071910465809354419035148873624856313067cf = continuedFra(N1, N2)
#N1 / N2 ~ a2 / k#k,a在cf中,需要进行特定判断(比如bit_length)可以得到
2.对可能的k,a2组合进行爆破(代码需承接上面)
for (k,a2) in getit(cf):if(len(bin(a2)[2:]) == 256):modlist = [e,a2]clist = [-inverse(k,e),0]phi_ = crt(modlist,clist)[0]mod = e*a2 // GCD(e,a2)right = phi_ + N1 // mod * modfor i in range(12):#从右往左爆破一定数量phi = right - i*modtry:d = inverse(e,phi)m = pow(enc1,d,N1)flag = long_to_bytes(m).decode()#decode()过滤多数字符print(flag)except:pass
#flag{b5073f3d774c460ae2b714010cc69435}
4.参考
题解1