机器人工具箱学习(三)

一、动力学方程

  机器人的动力学公式描述如下:
在这里插入图片描述
式中, τ \boldsymbol{\tau} τ表示关节驱动力矩矢量; q , q ˙ , q ¨ \boldsymbol{q} ,\; \dot{\boldsymbol { q }} ,\; \ddot{\boldsymbol { q }} q,q˙,q¨分别为广义的关节位置、速度和加速度; M \boldsymbol{M} M为关节的空间惯量矩阵; C \boldsymbol{C} C为科氏力和离心力耦合矩阵; G \boldsymbol{G} G为重力; F f \boldsymbol{F}_f Ff为关节摩擦力。

  机器人的动力学参数包括惯性参数和摩擦参数。
  (1)惯性参数有:连杆质量 m m m、相对于连杆坐标系的质心矢量 r \boldsymbol{r} r和转动惯量矩阵 I \boldsymbol{I} I。其中,质心矢量 r \boldsymbol{r} r可以表示为:
在这里插入图片描述
式中, r x r_x rx r y r_y ry r z r_z rz分别表示质心矢量 r \boldsymbol{r} r在连杆坐标系下三个坐标轴的分量。转动惯量矩阵 I \boldsymbol{I} I为包含六个独立元素的二维矩阵,表示为:
在这里插入图片描述
式中,主对角元素为惯性矩,非主对角元素为惯性积。

  (2)机器人动力学建模中常用的摩擦模型为库伦-粘滞摩擦模型,其表达式为:
在这里插入图片描述
式中, f c f_c fc f v f_v fv分别表示库伦摩擦系数和粘滞摩擦系数; v v v表示关节速度。注意:对于库伦摩擦系数的处理不同人有不同的处理,有的地方认为库伦摩擦是对称的,即当机器人关节正向旋转和反向旋转时,库伦摩擦力大小相等,方向相反,也即 f c + = f c − f_c^+ = f_c^- fc+=fc;也有的地方认为库伦摩擦是非对称的,即当机器人关节正向旋转和反向旋转时,库伦摩擦力大小不相等。

二、机器人工具箱描述动力学方程

2.1 动力学参数赋值

  在机器人工具箱中,提供了如下动力学参数输入接口:
  (1)Link.m:表示连杆的质量;
  (2)Link.r:表示连杆的质心矢量;
  (3)Link.I:表示连杆的惯量矩阵;
  (4)Link.Jm:表示驱动电机的转动惯量;
  (5)Link.B:表示粘滞摩擦系数;
  (6)Link.Tc:表示库伦摩擦系数;
  (7)Link.G:表示电机齿轮传动比(默认为1)

  这里仍然以3-DOF平面机械臂为例:

%% 动力学
% RRR机械臂
clear;
close all;
clc;%               theta(z)   d(z)     a(x)     alpha(x)  
RRR_L(1) = Link([  0       0        1        0    ],'standard');
RRR_L(2) = Link([  0       0      0.8        0    ],'standard');
RRR_L(3) = Link([  0       0      0.6        0    ],'standard');% 连杆1动力学参数
RRR_L(1).m = 4.0;
RRR_L(1).r = [0.12; 0.08; 0.31];
RRR_L(1).I = [0.32 0.01 0.02;0.01 0.12 0.11;0.02 0.11 0.41];
RRR_L(1).Jm = 0.0012;
RRR_L(1).B = 0.00148;
RRR_L(1).Tc = [+0.395, -0.435];
RRR_L(1).G = 1.2;% 连杆2动力学参数
RRR_L(2).m = 15.2;
RRR_L(2).r = [-0.475; 0.097; 0.06];
RRR_L(2).I = [1.21 0.21 0.32;0.21 0.52 0.11;0.32 0.11 0.51];
RRR_L(2).Jm = 0.0048;
RRR_L(2).B = 0.00329;
RRR_L(2).Tc = [+0.462; -0.561];
RRR_L(2).G = 1.4;% 连杆3动力学参数
RRR_L(3).m = 0.6;
RRR_L(3).r = [0.01; 0.097; 0.016];
RRR_L(3).I = [0.021 0.03 0.382;0.03 0.152 0.11;0.382 0.11 0.651];
RRR_L(3).Jm = 0.0061;
RRR_L(3).B = 0.00429;
RRR_L(3).Tc = [+0.262; -0.661];
RRR_L(3).G = 1.7;three_link = SerialLink(RRR_L, 'name', '3-DOF');

  采用dyn( )函数可以查看动力学参数,如图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 动力学方程中的各项表示

(1)空间惯量矩阵 M ( q ) \boldsymbol{M}(\boldsymbol{q}) M(q)
  机器人的空间惯量是机器人各关节的位姿的函数,在不同机器人位形时具有不同的值。机器人工具箱中可以调用robot.inertia(q)函数获得空间惯量矩阵。
  例如:当3-DOF平面机械臂三个关节角度为30°、45°和60°时,其空间惯量矩阵为:
在这里插入图片描述

(2)科氏力和离心力耦合矩阵 C ( q , q ˙ ) \boldsymbol{C}(\boldsymbol{q},\dot{\boldsymbol{q}}) C(q,q˙)
  科氏力和离心力耦合矩阵是关节位置和速度的函数。机器人工具箱中可以调用robot.coriolis(q, qd)函数获得该耦合矩阵。
  例如:当3-DOF平面机械臂三个关节角度为30°、45°和60°,三个关节速度为10°/s、20°/s和30°/s时,其科氏力和离心力耦合矩阵为:
在这里插入图片描述

(3)重力矩阵 G ( q ) \boldsymbol{G}(\boldsymbol{q}) G(q)
  重力矩阵与机器人的位形有关,是对各关节所受重力的描述,其值不受机器人的运动的影响。机器人工具箱中可以调用robot.gravload(q, grav)函数来获得重力矩阵,其中grav自定义重力加速度向量。
  例如:当3-DOF平面机械臂三个关节角度为30°、45°和60°,重力加速度向量为 y y y轴负向,即grav = [0; -9.8; 0]。重力矩阵为:
在这里插入图片描述

(4)摩擦力矩阵 F f ( q ˙ ) \boldsymbol{F}_f(\dot{\boldsymbol{q}}) Ff(q˙)
  摩擦力矩阵是由各关节的给定摩擦参数数值决定的,大小与各关节的速度有关。机器人工具箱中可以调用robot.friction(qd)函数来获得重力矩阵。
  例如:当3-DOF平面机械臂三个关节速度为10°/s、20°/s和30°/s时,其摩擦力矩阵为:
在这里插入图片描述

三、逆动力学分析

  机器人的逆动力学分析是在给定机器人关节位置、速度和加速度时,计算得到机器人各关节所需要的力和力矩大小。机器人工具箱中可以调用robot.rne(q, qd, qdd, grav)函数来计算逆动力学。其中,q, qd, qdd分别表示机器人关节位置、速度和加速度;grav表示自定义的重力加速度矢量。除此之外,还可以添加参数fext,表示末端执行器受到的外力和力矩 [ F x , F y , F z , τ x , τ y , τ z ] [F_x,\: F_y,\: F_z,\: \tau_x,\: \tau_y,\: \tau_z] [Fx,Fy,Fz,τx,τy,τz]
  例子:让3-DOF平面机械臂按照下图所示的轨迹运动。
在这里插入图片描述

代码:

%% 动力学
% RRR机械臂
clear;
close all;
clc;%               theta(z)   d(z)     a(x)     alpha(x)  
RRR_L(1) = Link([  0       0        1        0    ],'standard');
RRR_L(2) = Link([  0       0      0.8        0    ],'standard');
RRR_L(3) = Link([  0       0      0.6        0    ],'standard');% 连杆1动力学参数
RRR_L(1).m = 4.0;
RRR_L(1).r = [0.12; 0.08; 0.31];
RRR_L(1).I = [0.32 0.01 0.02;0.01 0.12 0.11;0.02 0.11 0.41];
RRR_L(1).Jm = 0.0012;
RRR_L(1).B = 0.00148;
RRR_L(1).Tc = [+0.395, -0.435];
RRR_L(1).G = 1.2;% 连杆2动力学参数
RRR_L(2).m = 15.2;
RRR_L(2).r = [-0.475; 0.097; 0.06];
RRR_L(2).I = [1.21 0.21 0.32;0.21 0.52 0.11;0.32 0.11 0.51];
RRR_L(2).Jm = 0.0048;
RRR_L(2).B = 0.00329;
RRR_L(2).Tc = [+0.462; -0.561];
RRR_L(2).G = 1.4;% 连杆3动力学参数
RRR_L(3).m = 5.6;
RRR_L(3).r = [0.01; 0.097; 0.016];
RRR_L(3).I = [0.921 0.03 0.382;0.03 0.252 0.11;0.382 0.11 1.251];
RRR_L(3).Jm = 0.0061;
RRR_L(3).B = 0.00429;
RRR_L(3).Tc = [+0.262; -0.661];
RRR_L(3).G = 1.7;three_link = SerialLink(RRR_L, 'name', '3-DOF');delta_t = 0.02;
t = 0:delta_t:4;
m = length(t);theta1 = 60*sin(4*pi*t/4);
theta2 = 60*sin(2*pi*t/4);
theta3 = 30*sin(2*pi*t/4);theta1_d = 60*pi*cos(4*pi*t/4);
theta2_d = 30*pi*cos(2*pi*t/4);
theta3_d = 15*pi*cos(2*pi*t/4);theta1_dd = -60*pi*pi*sin(4*pi*t/4);
theta2_dd = -15*pi*pi*sin(2*pi*t/4);
theta3_dd = -7.5*pi*pi*sin(2*pi*t/4);q = [theta1;theta2;theta3]'*pi/180;
qd = [theta1_d;theta2_d;theta3_d]'*pi/180;
qdd = [theta1_dd;theta2_dd;theta3_dd]'*pi/180;% 关节位置、速度、加速度绘图
figure(1)
subplot(3,1,1)
plot(t, q(:,1)*180/pi, 'b')
hold on
plot(t, q(:,2)*180/pi, 'r--')
hold on
plot(t, q(:,3)*180/pi, 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\theta$ (deg)', 'Interpreter', 'latex')
legend('$\theta_1$','$\theta_2$','$\theta_3$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')subplot(3,1,2)
plot(t, qd(:,1)*180/pi, 'b')
hold on
plot(t, qd(:,2)*180/pi, 'r--')
hold on
plot(t, qd(:,3)*180/pi, 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\dot{\theta}$ (deg)', 'Interpreter', 'latex')
legend('$\dot{\theta_1}$','$\dot{\theta_2}$','$\dot{\theta_3}$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')subplot(3,1,3)
plot(t, qdd(:,1)*180/pi, 'b')
hold on
plot(t, qdd(:,2)*180/pi, 'r--')
hold on
plot(t, qdd(:,3)*180/pi, 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\ddot{\theta}$ (deg)', 'Interpreter', 'latex')
legend('$\ddot{\theta_1}$','$\ddot{\theta_2}$','$\ddot{\theta_3}$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')set(gcf, 'color',[1 1 1]);% 运动示意
figure(2)
three_link.plot(q,'trail','b');% 逆动力学
grav = [0; -9.8; 0];
tau = three_link.rne(q, qd, qdd, grav);% 关节驱动力矩
figure(3)
plot(t,tau(:,1), 'b')
hold on
plot(t, tau(:,2), 'r--')
hold on
plot(t, tau(:,3), 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\tau$ (N/m)', 'Interpreter', 'latex')
legend('$\tau_1$','$\tau_2$','$\tau_3$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')
set(gcf, 'color',[1 1 1]);

运行结果:
在这里插入图片描述
在这里插入图片描述

四、结语

  机器人工具箱还有其他的一些应用,譬如正动力学分析、视觉相关应用等,不过笔者对这些没有接触过,就不误导大家了。
  我是木头人,以上全是个人见解,有问题请大家评论区指出,大家共同进步!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/12747.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp如何打包预约上门按摩APP

uniapp如何打包预约上门按摩APP? 开发工具:HBuilderX 一、创建移动应用 1、 点击此处微信开放平台 2、点击【管理中心 - 移动应用 - 创建移动应用】填写资料后等待审核 app运行流程图 签名如何获取: 1)先把打包好的app安装在手…

java多线程——线程池

概述 线程池是管理java线程生命周期的工具 降低资源消耗。通过池化技术能够重复利用已创建的线程,降低线程频繁创建和销毁造成的资源消耗提高线程的可管理性。无需程序员手动销毁线程,控制线程创建的数量,避免无限制的创建影响系统稳定性 …

OpenHarmony上移植memtester

1. 下载源码: wget https://pyropus.ca./software/memtester/old-versions/memtester-4.6.0.tar.gz 2. 解压并指定交叉编译方式 解压 tar -xvf memtester-4.6.0.tar.gz 修改conf-cc和conf-ld,指定交叉编译方式 conf-cc conf-ld 3. 编译 直接运行m…

Stable Diffusion入门使用技巧及个人实例分享--大模型及lora篇

大家好,近期使用Stable Diffusion比较多,积累整理了一些内容,得空分享给大家。如果你近期正好在关注AI绘画领域,可以看看哦。 本文比较适合已经解决了安装问题,(没有安装的在文末领取) 在寻找合…

分布式搜索——ElasticSeach简介

一般都用数据库存储数据,然后对数据库进行查询获取数据,但是当数据量很大时,查询效率就会很慢(具体下面会讲到),所以这种情况下就会使用到ElasticSeach ElasticSeach的基本介绍 ElasticSeach是一 款非常强…

杰发科技AC7801——ADC之Bandgap和内部温度计算

0. 参考 电流模架构Bandgap设计与仿真 bandgap的理解(内部带隙电压基准) ​ ​ 虽然看不懂这些公式,但是比较重要的一句应该是这个:因为传统带隙基准的输出值为1.2V ​ 1. 使用 参考示例代码。 40002000是falsh控制器寄…

NXP RT1176(一)——二级BootLoader开发(安全引导加载程序SBL)

目录 1. 开发环境 2. 二级BOOT的功能 3. 步骤 3.1 配置源码 3.2 构建项目 3.2.1 MDK 3.2.2 IAR(IAR也编译一下工程看看,这样两个平台都可以支持了) 单核M7的开发!! 1. 开发环境 本文Windows下开发:…

MHD、MQA、GQA注意力机制详解

MHD、MQA、GQA注意力机制详解 注意力机制详解及代码前言:MHAMQAGQA 注意力机制详解及代码 前言: 自回归解码器推理是 Transformer 模型的 一个严重瓶颈,因为在每个解码步骤中加 载解码器权重以及所有注意键和值会产生 内存带宽开销 下图为三…

【合成孔径雷达】合成孔径雷达的多视角理解和时/频成像算法的统一解释

文章目录 一、什么是雷达成像(1)主要的遥感探测手段:光学、红外和雷达(2)从数学的角度:雷达成像主要研究什么?数据采集: y T x n yTxn yTxn信息提取: y − > x ? y…

编译错误:stray ‘\357’ in program的解决方法

目录 把报错文件更换编码格式,我试的utf-8 bom编码就可以了,可以多换几种试试。 网友的另一种案例: 编译错误:stray ‘\357’ in program的解决方法 把报错文件更换编码格式,我试的utf-8 bom编码就可以了&#xff0c…

如何同步管理1000个设备的VLAN数据?

什么是VLAN? VLAN,也就是虚拟局域网,是通过为子网提供数据链路连接来抽象出局域网的概念。在企业网中,一个企业级交换机一般是24口或者是48口,连接这些接口的终端在物理上形成一个广播域。广播域过大,就会导…

【AI智能体】零代码构建AI应用,全网都在喊话歌手谁能应战,一键AI制作歌手信息查询应用

欢迎来到《小5讲堂》 这是《文心智能体平台》系列文章,每篇文章将以博主理解的角度展开讲解。 温馨提示:博主能力有限,理解水平有限,若有不对之处望指正! 目录 文心智能体大赛背景创建应用平台地址快速构建【基础配置】…

前端无样式id或者class等来定位标签

目录: 1、使用背景2、代码处理 1、使用背景 客户使用我们产品组件,发现替换文件,每次替换都会新增如下的样式,造就样式错乱,是组件的文件,目前临时处理的话就是替换文件时删除新增的样式,但是发…

【JVM】阅读Class字节码:常量池

目录 基本结构解析 常量池 常量池简介 如何阅读Class文件中的常量池信息 基本结构解析 Magic(魔数) Magic的唯一作用是确定这个文件是否为一个能被虚拟机所接受的class 文件。魔数值固定为0xCAFEBABE,不会改变。 常量池 常量池简介 下图是反编译过后的字节码文…

TensorFlow的学习

0.基础概念 术语表: https://developers.google.cn/machine-learning/glossary?hlzh-cn#logits 1.快速入门 https://tensorflow.google.cn/tutorials/quickstart/beginner?hlzh-cn 2.基于Keras进行图像分类 https://tensorflow.google.cn/tutorials/keras/cl…

gradle 共享存储挂载缓存目录的问题

2个任务同时构建的时候,报错如上。 原因:挂载目录的问题导致的,挂在最小粒度的目录下。 /home/app/.gradle/caches/modules-2/files-2.1 挂载到这个级别的目录下。

演员怎么上百度百科

百度百科是一个公正、开放、客观的平台,它为演员提供了一个展示自己过往经历和演艺生涯的平台。以下是百科优化网yajje总结的演员创建百度百科的一些步骤和注意事项: 创建演员百度百科的基本条件 人物影响力:演员创建百度百科需要满足官方的规…

振弦采集仪在岩土工程监测中的重要性及应用案例分享

振弦采集仪在岩土工程监测中的重要性及应用案例分享 岩土工程监测是为了确保土地和建筑物的稳定性以及确保施工安全而进行的一项重要工作。河北稳控科技振弦采集仪是岩土工程监测中一种常用的仪器设备,通过测量土体振动频率来评估土体的稳定性和强度变化&#xff0…

霸道龙尊短视频:成都鼎茂宏升文化传媒公司

霸道龙尊短视频:龙族的传奇与现代的交融 在数字化时代的浪潮中,短视频以其短小精悍、内容丰富的特点,迅速占领了人们的碎片时间。成都鼎茂宏升文化传媒公司而在这些短视频中,一股独特的“霸道龙尊”风潮正在悄然兴起,…

Nginx配置文件conf解释

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 Nginx(“engine x”…