day3_prefixSum

一、前缀和技巧

重点

前缀和技巧适用于快速、频繁地计算一个索引区间内的元素之和

个人理解;预计算,空间换时间

1.(一维数组的前缀和)303区域和检索-数组不可变

获取闭区间值 [left,right] -> preSum[right + 1] - preSum[left],其中preSum[right+1]表示累加到right时的总和

class NumArray {// 前缀和数组private int[] preSum;/* 输入一个数组,构造前缀和 */public NumArray(int[] nums) {// preSum[0] = 0,便于计算累加和preSum = new int[nums.length + 1];// 计算 nums 的累加和for (int i = 1; i < preSum.length; i++) {preSum[i] = preSum[i - 1] + nums[i - 1];}}/* 查询闭区间 [left, right] 的累加和 */public int sumRange(int left, int right) {return preSum[right + 1] - preSum[left];}
}/*** Your NumArray object will be instantiated and called as such:* NumArray obj = new NumArray(nums);* int param_1 = obj.sumRange(left,right);*/
2.(二维数组的前缀和)

同样的预计算

class NumMatrix {
// 定义:preSum[i][j] 记录 matrix 中子矩阵 [0, 0, i-1, j-1] 的元素和private int[][] preSum;public NumMatrix(int[][] matrix) {int m = matrix.length, n = matrix[0].length;if (m == 0 || n == 0) return;// 构造前缀和矩阵preSum = new int[m + 1][n + 1];for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {// 计算每个矩阵 [0, 0, i, j] 的元素和preSum[i][j] = preSum[i-1][j] + preSum[i][j-1] + matrix[i - 1][j - 1] - preSum[i-1][j-1];}}}// 计算子矩阵 [x1, y1, x2, y2] 的元素和public int sumRegion(int x1, int y1, int x2, int y2) {// 目标矩阵之和由四个相邻矩阵运算获得return preSum[x2+1][y2+1] - preSum[x1][y2+1] - preSum[x2+1][y1] + preSum[x1][y1];}
}/*** Your NumMatrix object will be instantiated and called as such:* NumMatrix obj = new NumMatrix(matrix);* int param_1 = obj.sumRegion(row1,col1,row2,col2);*/

在这里插入图片描述

  1. 任何一个小矩阵可以由上图的矩阵计算得到
  2. 而下面这四个矩阵对应的是小矩阵的四个顶点(根据参数可推)
  3. 所以预计算每个以(0,0),(x,y)结尾的矩阵的值,经过计算即可得到

二、二叉树(纲领篇)

参考链接东哥带你刷二叉树(纲领篇) | labuladong 的算法笔记

先在开头总结一下,二叉树解题的思维模式分两类:

1、是否可以通过遍历一遍二叉树得到答案?

如果可以,用一个 traverse 函数配合外部变量来实现,这叫「遍历」的思维模式。

2、是否可以定义一个递归函数,通过子问题(子树)的答案推导出原问题的答案?

如果可以,写出这个递归函数的定义,并充分利用这个函数的返回值,这叫「分解问题」的思维模式。

无论使用哪种思维模式,你都需要思考:

如果单独抽出一个二叉树节点,它需要做什么事情?需要在什么时候(前/中/后序位置)做?其他的节点不用你操心,递归函数会帮你在所有节点上执行相同的操作。

1.二叉树的重要性

举个例子,比如两个经典排序算法 快速排序 和 归并排序,对于它俩,你有什么理解?

如果你告诉我,快速排序就是个二叉树的前序遍历,归并排序就是个二叉树的后序遍历,那么我就知道你是个算法高手了

如果你一眼就识破这些排序算法的底细,还需要背这些经典算法吗?不需要。你可以手到擒来,从二叉树遍历框架就能扩展出算法了。

说了这么多,旨在说明,二叉树的算法思想的运用广泛,甚至可以说,只要涉及递归,都可以抽象成二叉树的问题

2.深入理解前中后序

根据几个问题引发思考

1、你理解的二叉树的前中后序遍历是什么,仅仅是三个顺序不同的 List 吗?

2、请分析,后序遍历有什么特殊之处?

3、请分析,为什么多叉树没有中序遍历?

鄙人是肯定答不上来的

void traverse(TreeNode root) {if (root == null) {return;}// 前序位置traverse(root.left);// 中序位置traverse(root.right);// 后序位置
}

你也注意到了,只要是递归形式的遍历,都可以有前序位置和后序位置,分别在递归之前和递归之后。

所谓前序位置,就是刚进入一个节点(元素)的时候,后序位置就是即将离开一个节点(元素)的时候,那么进一步,你把代码写在不同位置,代码执行的时机也不同:

在这里插入图片描述

比如说,如果让你倒序打印一条单链表上所有节点的值,你怎么搞?

实现方式当然有很多,但如果你对递归的理解足够透彻,可以利用后序位置来操作

/* 递归遍历单链表,倒序打印链表元素 */
void traverse(ListNode head) {if (head == null) {return;}traverse(head.next);// 后序位置print(head.val);
}

教科书里只会问你前中后序遍历结果分别是什么,所以对于一个只上过大学数据结构课程的人来说,他大概以为二叉树的前中后序只不过对应三种顺序不同的 List<Integer> 列表。

但是我想说,前中后序是遍历二叉树过程中处理每一个节点的三个特殊时间点,绝不仅仅是三个顺序不同的 List:

  1. 前序位置的代码在刚刚进入一个二叉树节点的时候执行;
  2. 后序位置的代码在将要离开一个二叉树节点的时候执行;
  3. 中序位置的代码在一个二叉树节点左子树都遍历完,即将开始遍历右子树的时候执行。

在这里插入图片描述

这里你也可以理解为什么多叉树没有中序位置,因为二叉树的每个节点只会进行唯一一次左子树切换右子树,而多叉树节点可能有很多子节点,会多次切换子树去遍历,所以多叉树节点没有「唯一」的中序遍历位置。

重点1

二叉树的所有问题,就是让你在前中后序位置注入巧妙的代码逻辑,去达到自己的目的,你只需要单独思考每一个节点应该做什么,其他的不用你管,抛给二叉树遍历框架,递归会在所有节点上做相同的操作

3.两种解题思路

二叉树题目的递归解法可以分两类思路,第一类是遍历一遍二叉树得出答案,第二类是通过分解问题计算出答案,这两类思路分别对应着 回溯算法核心框架 和 动态规划核心框架

在这里插入图片描述

4.后序位置的特殊之处

中序位置主要用在 BST 场景中,你完全可以把 BST 的中序遍历认为是遍历有序数组。

前序位置本身其实没有什么特别的性质,之所以你发现好像很多题都是在前序位置写代码,实际上是因为我们习惯把那些对前中后序位置不敏感的代码写在前序位置罢了。

你可以发现,前序位置的代码执行是自顶向下的,而后序位置的代码执行是自底向上的:

在这里插入图片描述

重点2

但这里面大有玄妙,意味着前序位置的代码只能从函数参数中获取父节点传递来的数据,而后序位置的代码不仅可以获取参数数据,还可以获取到子树通过函数返回值传递回来的数据

举具体的例子,现在给你一棵二叉树,我问你两个简单的问题:

1、如果把根节点看做第 1 层,如何打印出每一个节点所在的层数?

2、如何打印出每个节点的左右子树各有多少节点?

第一个问题从根节点就能给出答案,而第二个问题必须遍历完子树之后才能给出答案

结合这两个简单的问题,你品味一下后序位置的特点,只有后序位置才能通过返回值获取子树的信息。

那么换句话说,一旦你发现题目和子树有关,那大概率要给函数设置合理的定义和返回值,在后序位置写代码了

例题lc543题 二叉树的直径

5.以树的视角看 动归/回溯/DFS算法的区别和联系

DFS 算法和回溯算法非常类似,只是在细节上有所区别

这个细节上的差别是什么呢?其实就是「做选择」和「撤销选择」到底在 for 循环外面还是里面的区别,DFS 算法在外面,回溯算法在里面。

为什么有这个区别?还是要结合着二叉树理解。这一部分我就把回溯算法、DFS 算法、动态规划三种经典的算法思想,以及它们和二叉树算法的联系和区别,用一句话来说明:

动归/DFS/回溯算法都可以看做二叉树问题的扩展,只是它们的关注点不同

  • 动态规划算法属于分解问题的思路,它的关注点在整棵「子树」
  • 回溯算法属于遍历的思路,它的关注点在节点间的「树枝」
  • DFS 算法属于遍历的思路,它的关注点在单个「节点」

三个例子解释三种情况

1.计算一棵二叉树有多少个节点?

// 定义:输入一棵二叉树,返回这棵二叉树的节点总数
int count(TreeNode root) {if (root == null) {return 0;}// 我这个节点关心的是我的两个子树的节点总数分别是多少int leftCount = count(root.left);int rightCount = count(root.right);// 后序位置,左右子树节点数加上自己就是整棵树的节点数return leftCount + rightCount + 1;
}

你看,这就是动态规划分解问题的思路,它的着眼点永远是结构相同的整个子问题,类比到二叉树上就是「子树」

你再看看具体的动态规划问题,比如 动态规划框架套路详解 中举的斐波那契的例子,我们的关注点在一棵棵子树的返回值上:

2.使用遍历的思路写一个traverse函数,打印出遍历这棵二叉树的过程

回溯算法遍历的思路,它的着眼点永远是在节点之间移动的过程,类比到二叉树上就是[树枝]

3.把二叉树的每个节点值都+1

void traverse(TreeNode root) {if (root == null) return;// 遍历过的每个节点的值加一root.val++;traverse(root.left);traverse(root.right);
}

你看,这就是 DFS 算法遍历的思路,它的着眼点永远是在单一的节点上,类比到二叉树上就是处理每个「节点」

你再看看具体的 DFS 算法问题,比如 一文秒杀所有岛屿题目 中讲的前几道题,我们的关注点是 grid 数组的每个格子(节点),我们要对遍历过的格子进行一些处理,所以我说是用 DFS 算法解决这几道题的:

有了这些铺垫,你就很容易理解为什么回溯算法和 DFS 算法代码中「做选择」和「撤销选择」的位置不同了,看下面两段代码:

// DFS 算法把「做选择」「撤销选择」的逻辑放在 for 循环外面
void dfs(Node root) {if (root == null) return;// 做选择print("我已经进入节点 %s 啦", root)for (Node child : root.children) {dfs(child);}// 撤销选择print("我将要离开节点 %s 啦", root)
}// 回溯算法把「做选择」「撤销选择」的逻辑放在 for 循环里面
void backtrack(Node root) {if (root == null) return;for (Node child : root.children) {// 做选择print("我站在节点 %s 到节点 %s 的树枝上", root, child)backtrack(child);// 撤销选择print("我将要离开节点 %s 到节点 %s 的树枝上", child, root)}
}

看到了吧,你回溯算法必须把「做选择」和「撤销选择」的逻辑放在 for 循环里面,否则怎么拿到「树枝」的两个端点?

6.层序遍历(简单过一下)

二叉树题型主要是用来培养递归思维的,而层序遍历属于迭代遍历,也比较简单,这里就过一下代码框架吧:

// 输入一棵二叉树的根节点,层序遍历这棵二叉树
void levelTraverse(TreeNode root) {if (root == null) return;Queue<TreeNode> q = new LinkedList<>();q.offer(root);// 从上到下遍历二叉树的每一层while (!q.isEmpty()) {int sz = q.size();// 从左到右遍历每一层的每个节点for (int i = 0; i < sz; i++) {TreeNode cur = q.poll();// 将下一层节点放入队列if (cur.left != null) {q.offer(cur.left);}if (cur.right != null) {q.offer(cur.right);}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/10442.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux下VMamba 环境复现+环境测试

# 1. 创建自己的虚拟环境 conda create -n VMamba python3.10.13 conda activate VMamba # 2. cuda-11.8 conda install cudatoolkit11.8 -c nvidia # 3. torch torchvision torchaudio 与 官网命令一致 pip install torch2.1.1 torchvision0.16.1 torchaudio2.1.1 --index-url…

苹果电脑怎么清内存?2024有哪些好用的工具?

在使用苹果电脑的过程中&#xff0c;我们可能会遇到系统运行缓慢、程序响应迟缓或频繁出现应用程序崩溃的情况&#xff0c;这些问题很可能是由于内存占用过高所导致。内存&#xff0c;或称为RAM&#xff08;RandomAccessMemory&#xff09;&#xff0c;是计算机的临时存储区&am…

超级好看的html网站维护源码

源码介绍 好看的html网站维护源码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面&#xff0c; 源码截图 源码下载 好看的html网站维护源码

py黑帽子学习笔记_网络编程工具

tcp客户端 socket.AF_INET表示使用标准IPV4地址和主机名 SOCK_STREAM表示这是一个TCP客户端 udp客户端 udp无需连接&#xff0c;因此不需要client.connect这种代码 socket.SOCK_DGRAM是udp的 tcp服务端 server.listen(5)表示设置最大连接数为5 发现kill server后端口仍占用…

【服务治理中间件】consul介绍和基本原理

目录 一、CAP定理 二、服务注册中心产品比较 三、Consul概述 3.1 什么是Consul 3.2 Consul架构 3.3 Consul的使用场景 3.4 Consul健康检查 四、部署consul集群 4.1 服务器部署规划 4.2 下载解压 4.3 启动consul 五、服务注册到consul 一、CAP定理 CAP定理&#xff…

i春秋-Backdoor

题目 考点 git源码泄露 Linux文件恢复 代码审计 http 解题 参考wp https://blog.csdn.net/cbhjerry/article/details/105791056https://www.pianshen.com/article/19461342501/扫描 题目给出提示&#xff1a;敏感文件泄漏 于是使用dirsearch扫一下 python dirsearch.py -…

ICode国际青少年编程竞赛- Python-4级训练场-while语句综合

ICode国际青少年编程竞赛- Python-4级训练场-while语句综合 1、 for i in range(4):while not Flyer[i].disappear():wait()Spaceship.step(6)Spaceship.turnLeft()2、 Dev.turnLeft() for i in range(4):Spaceship.step(2)while Flyer[i].disappear():wait()Dev.step(4)Dev.…

Failed to parse source map (@toast-ui/editor/dist/purify.js.map)

使用 toast-ui-editor 时出现报错&#xff1a;Failed to parse source map (toast-ui/editor/dist/purify.js.map) 解决方法很简单&#xff1a; "start": "set "GENERATE_SOURCEMAPfalse" && react-scripts start ",在启动脚本时添加执…

程序员代码面试指南题目解析(一)

题目一&#xff1a;如何仅用递归函数和栈操作逆序一个栈 题目要求&#xff1a; 一个栈依次压入 1、2、3、4、5&#xff0c;那么从栈顶到栈底分别为5、4、3、2、1。将这个栈 转置后&#xff0c;从栈顶到栈底为 1、2、3、4、5&#xff0c;也就是实现栈中元素的逆序&#xff0c;但…

【吴恩达机器学习-week2】多个变量的线性回归问题

文章目录 1.1 目标2 问题陈述2.1 包含我们示例的矩阵 X2.2 参数向量 w \mathbf{w} w 和 b b b 3 使用多个变量进行模型预测3.1 逐元素单独预测3.2 单一预测&#xff0c;向量 4 使用多个变量计算成本5 使用多个变量的梯度下降5.1 使用多个变量计算梯度 多个变量的梯度下降小结…

搜歌网搜索各种类型音乐,统统歌曲转换格式mp3,轻松实现音乐自由!

在互联网的广阔天地中&#xff0c;音乐爱好者们总能找到满足自己需求的平台。其中&#xff0c;支持全网搜歌的网站无疑是一个值得推荐的音乐探索乐园。无论是寻找经典老歌&#xff0c;还是发掘新兴音乐&#xff0c;搜他们都能为音乐爱好者提供一站式的服务。 一般支持全网搜索…

值得收藏!!《软考信息处理技术员》必背100母题,轻松45+

距离软考考试的时间越来越近了&#xff0c;趁着这两周赶紧准备起来 今天给大家整理了——软考信息处理技术员100道经典母题&#xff0c;年年从里面抽&#xff0c;有PDF&#xff0c;可打印&#xff0c;每天刷几道。 第一章 电脑的基本操作 1、&#xff08; &#xff09;不是国产…

Linux线程(二)线程互斥

目录 一、为什么需要线程互斥 二、线程互斥的必要性 三、票务问题举例&#xff08;多个线程并发的操作共享变量引发问题&#xff09; 四、互斥锁的用法 1.互斥锁的原理 2、互斥锁的使用 1、初始化互斥锁 2、加锁和解锁 3、销毁互斥锁&#xff08;动态分配时需要&#…

RFID在汽车制造中的应用如何改变行业

随着工业4.0和中国制造2025的推进&#xff0c;企业对于智能化、自动化的需求日益增长&#xff0c;RFID射频技术在制造业中已经相当普遍了。在如今这瞬息万变的行业与时代中&#xff0c;RFID技术可以帮助企业获得竞争优势&#xff0c;简化日益复杂的生产流程&#xff0c;推动企业…

C语言实战项目---通讯录

项目要实现的内容&#xff1a;能够存放100个人的通讯录程序&#xff0c;能够实现联系人数据的存储&#xff0c;删除&#xff0c;修改&#xff0c;查找&#xff0c;展示联系人的信息。 所需知识&#xff1a;结构体&#xff0c;指针&#xff0c;函数................. 废话不多…

2016-2021年全国范围的2.5m分辨率的建筑屋顶数据

一、论文介绍 摘要&#xff1a;大规模且多年的建筑屋顶面积&#xff08;BRA&#xff09;地图对于解决政策决策和可持续发展至关重要。此外&#xff0c;作为人类活动的细粒度指标&#xff0c;BRA可以为城市规划和能源模型提供帮助&#xff0c;为人类福祉带来好处。然而&#xf…

Qt之常用控件一

Widget常见属性及其作用 属性作用enabled 设置控件是否可使⽤. true 表⽰可⽤, false 表⽰禁⽤ geometry 位置和尺⼨. 包含 x, y, width, height 四个部分. 其中坐标是以⽗元素为参考进⾏设置的. windowTitle 设置 widget 标题 windowIcon 设置 widget 图标 windowOpa…

java日历类概述

Java中的Calendar类位于java.util包下&#xff0c;它是一个抽象类&#xff0c;用于表示和管理日期及时间。Calendar类并不是直接实例化的&#xff0c;而是通过其提供的静态方法来获取实例。通常情况下&#xff0c;当你尝试创建一个Calendar实例时&#xff0c;实际上你得到的是G…

The 2023 ICPC Asia Hefei Regional Contest

目录 B. Queue Sorting 应该还会再补几题 B. Queue Sorting 题解&#xff1a; Dilworth定理: 【偏序关系与偏序集、Hasse图、极大元、极小元、全序关系、最大元、良序集/三小时讲不完离散数学之集合论/考研复试/期末复习考前冲刺/近世代数/抽象代数】https://www.bilibili.c…

C++奇迹之旅:string类对象的容量操作

文章目录 &#x1f4dd; string类的常用接口&#x1f309; string类对象的容量操作&#x1f320;size&#x1f320;length&#x1f320;capacity&#x1f320;clear&#x1f320;empty&#x1f320;reserve&#x1f309;resize &#x1f6a9;总结 &#x1f4dd; string类的常用…