手动实现简易版RPC(四)

手动实现简易版RPC(四)

往期内容

  • 手动实现简易版RPC(一):RPC简介及系统架构

  • 手动实现简易版RPC(二):简单RPC框架实现

  • 手动实现简易版RPC(三):mock数据生成

前言

接上几篇博客我们实现了最简易RPC框架,实现了mock数据等,接下来的几期重点在简易版的rpc框架上继续深耕。本文主要介绍简易版RPC 中序列化相关的内容。


手动实现简易版RPC(一):RPC简介及系统架构中我们简单描述了RPC框架中序列化器相关的内容并成功使用Kryo序列化器作为我们的序列化器。了解到了序列化器的作用:无论是请求或响应,都会涉及参数的传输。而 Java 对象是存活在JVM 虚拟机中的,如果想在其他位置存储并访问、或者在网络中进行传输,就需要进行序列化和反序列化。

但是对于一个完善的 RPC 框架,我们在序列化器这个技术点中还要思考一些问题:

1.有没有更好的序列化器实现方式?
2.如何让使用框架的开发者指定使用的序列化器?
3.如何让使用框架的开发者自己定制序列化器?

带着这几个问题,我们一起来探索。

序列化器的实现方式

所谓更好的序列化器实现方式,无非就是速度快?序列化后序列化结果体积小?等等,这样才能满足传输时高效。

下面简单对比一下常用的序列化器以及他们的优缺点

  1. Java原生序列化:
    • 优点:
      • 简单易用:Java对象只需实现Serializable接口即可进行序列化。
      • 跨平台性:序列化的字节流是平台无关的,可以在不同的JVM之间传输数据。
    • 缺点:
      • 性能不佳:相对于其他序列化工具,Java原生序列化的性能较差,尤其是在处理大量数据时。
      • 安全性问题:Java原生序列化存在反序列化漏洞,可能导致安全风险。
      • 序列化后的数据体积较大:可能会导致存储和传输成本增加。
  2. Kryo序列化:
    • 优点:
      • 高性能:Kryo通过直接内存访问和使用高效的序列化算法,提供了比Java原生序列化更快的序列化和反序列化速度。
      • 低开销:序列化后的字节流体积小,传输和存储开销较低。
      • 支持自定义序列化:用户可以根据需求自定义序列化和反序列化逻辑。
    • 缺点:
      • 使用复杂度:相对于Java原生序列化,Kryo需要更多的配置和自定义,使用门槛稍高。
      • 兼容性:Kryo不是Java标准库的一部分,因此在使用时需要注意与其他系统的兼容性。
  3. Jackson序列化:
    • 优点:
      • 适用于JSON数据交换:Jackson主要用于将Java对象转换为JSON格式,适用于Web服务间的数据交换。
      • 灵活性:支持复杂的嵌套结构和数据类型,可以方便地处理各种Java对象。
      • 活跃的社区支持:Jackson拥有庞大的用户群体和活跃的社区支持,不断更新和优化功能。
    • 缺点:
      • 传输效率:相比二进制序列化工具,JSON格式的数据体积可能较大,传输效率较低。
      • 数据类型限制:JSON本身的数据类型有限,可能无法完全表示Java中所有的数据类型和复杂结构。
  4. Protocol Buffers(Protobuf):
    • 优点:
      • 高性能:序列化后的数据体积小,传输速度快。
      • 跨语言支持:Protobuf支持多种语言,方便跨语言通信。
      • 自动生成代码:可以根据定义的数据结构自动生成序列化和反序列化的代码。
    • 缺点:
      • 学习成本:需要学习Protobuf的数据定义语法和工具链。
      • 使用限制:对于某些复杂的Java对象结构,可能需要进行额外的处理或调整。
  5. Hessian :
    • 优点
      • 轻量级与高效:Hessian采用二进制RPC协议,适合在带宽较小的情况下使用,如手机网络应用。
      • 跨语言支持:Hessian支持多种编程语言,如Java、C++、C#等,方便在不同语言间传输数据。
      • 协议设计紧凑:Hessian协议设计优化,序列化后数据紧凑,减少带宽消耗。
      • 支持复杂数据类型:Hessian支持对象、数组、集合等多种复杂数据类型的序列化。
    • 缺点
      • 安全性不足:Hessian传输未加密,不适合对安全性要求高的应用。
      • 异常处理机制不完善:Hessian错误提示信息不足,事务处理存在欠缺。
      • 版本兼容性问题:使用Hessian时可能遇到与其他库或框架的版本兼容性问题。
      • 复杂对象处理挑战:传输复杂对象时可能削弱Hessian的传输优势,并增加客户端代码量。同时,同名成员变量在父类和子类间可能发生覆盖问题。

动态使用序列化器

之前使用序列化器的时候,都是采用硬编码的方式,

 // 指定序列化器
final Serializer serializer = new KryoSerializer();

如果想要替换某一个序列化器,那么在使用他的地方都得去修改代码,这个是非常麻烦的。

理想的情况下,我们想要实现的效果就是用户能够自定义进行配置或者自定义序列化器,具体方式可以参考dubbo替换序列化的方式: dubbo替换序列化协议🌐

自定义使用序列化器

如果用户不想使用我们框架中内嵌的一些序列化器,想自定义一个新的序列化器,但是呢又不能改变我们框架的现有逻辑,如果实现这个需求,应该如何实现?

在这里插入图片描述

其实思路还是比较简单的:只要我们的 RPC 框架能够读取到用户自定义的类路径,然后加载这个类,作为 Serializer 序列化器接口的实现即可。

那么具体怎么实现他呢?

HERE ARE SOMETHING NEW


在此引入SPI概念:

什么是SPI?

Java SPI(Service Provider Interface)是Java平台的一项特性,它提供了一种服务发现和加载的机制。SPI的核心原理是基于接口编程,允许第三方为某个接口提供实现,并在运行时动态地加载这些实现。这种机制使得Java应用程序能够灵活地扩展其功能,而无需修改原有的代码。

一些应用场景
  • 日志框架
    • Java SPI在日志框架中的应用非常普遍。以SLF4J(Simple Logging Facade for Java)为例,它允许应用程序在运行时选择不同的日志实现,而无需修改代码。SLF4J定义了一个日志接口,例如Logger,其中包含了常见的日志方法,如info(), debug(), error()等。然后,不同的日志实现(如Log4j、Logback、JDK Logging等)可以为这个接口提供具体的实现。在运行时,应用程序通过SPI机制加载所需的日志实现,从而实现日志功能的灵活配置和扩展。
  • 数据库驱动加载
    • 在Java数据库连接(JDBC)中,SPI也发挥着关键作用。JDBC通过SPI机制加载数据库驱动。具体来说,JDBC定义了一个java.sql.Driver接口,不同的数据库厂商(如MySQL、Oracle、SQL Server等)会为这个接口提供实现,并将这些实现打包成jar文件。这些jar文件会放在类路径下,并在META-INF/services目录下包含一个文件,文件名为java.sql.Driver,文件内容是实现该接口的类的全限定名。当应用程序需要连接到数据库时,JDBC会扫描这些文件并加载相应的驱动实现,从而实现数据库连接的建立。

如何实现

1-系统实现
  • 基本原理

    • 在Java中,SPI的使用方式通常如下:首先定义一个接口,然后在项目的src/main/resources/META-INF/services目录下创建一个以该接口全限定名命名的文件。文件内容是实现该接口的具体实现类的全限定名。当程序运行时,JVM会查找并加载这些实现类。
    • Java SPI的实现原理基于Java类加载机制和反射机制。当使用ServiceLoader.load(Class<T> service)方法加载服务时,会检查META-INF/services目录下是否存在以接口全限定名命名的文件。如果存在,则读取文件内容,获取实现该接口的类的全限定名,并通过Class.forName()方法加载对应的类。在加载类之后,ServiceLoader会通过反射机制创建对应类的实例,并将其缓存起来。
  • 应用到项目

    • 首先在ape-rpc-core模块下的resources目录下新建META-INF文件夹,在其下面建立services文件后,在services下创建文件com.jerry.rpccore.serializer.Serializer(这儿这个文件名,是你的接口全限定名命名的文件的类路径)

    请添加图片描述

    • 文件中的类容,就写接口实现类的类路径
      在这里插入图片描述

    • 然后就可以通过ServiceLoader.load()获取相应的接口实现,然后可以直接调取方法。

    Serializer serializer = null;ServiceLoader<Serializer> load = ServiceLoader.load(Serializer.class);
    for (Serializer serializer1 : load) {serializer = serializer1;System.out.println(serializer);
    }
    System.out.println(load);
    

    在这里插入图片描述

2-自定义实现

使用系统自带的spi虽然简单,但是如果我们想定义更多的接口及其实现类,就不能从框架中决定使用哪一个了,也就不能完成用户通过配置指定某个序列化的功能。

所以我们可以通过自定义spi ,可以灵活的通过配置,加载到某个实现类

比如读取一下配置文件,可以获取到一个map<序列化名,序列化实现类对象>,之后不就可以通过配置,获取到相关的实现类对象了

#系统内置序列化器配置参数
jdk:com.jerry.rpccore.serializer.JDKSerializer
hessian:com.jerry.rpccore.serializer.HessianSerializer
json:com.jerry.rpccore.serializer.JsonSerializer
kryo:com.jerry.rpccore.serializer.KryoSerializer

具体实现

1-多种序列化器的实现

之前我们实现了JDK以及Kryo序列化器,接下来我们实现Json以及Hessian序列化器

  • 首先引入pom相关依赖
<!-- https://mvnrepository.com/artifact/com.caucho/hessian --><dependency><groupId>com.caucho</groupId><artifactId>hessian</artifactId><version>4.0.66</version></dependency>
  • 然后可以在serializer序列化器目录下分别实现这几种序列化器,关于序列化器的代码,可以自行百度或者用ai生成。

    • json序列化器:这个玩意儿比较复杂,需要考虑一些对象转换兼容性的问题,比如Object类型数组在转化后会丢失类型。

    代码如下:

    package com.jerry.rpccore.serializer;import com.fasterxml.jackson.databind.ObjectMapper;
    import com.jerry.rpccore.model.RpcRequest;
    import com.jerry.rpccore.model.RpcResponse;import java.io.IOException;/*** Json 序列化器**/
    public class JsonSerializer implements Serializer {private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();@Overridepublic <T> byte[] serialize(T obj) throws IOException {return OBJECT_MAPPER.writeValueAsBytes(obj);}@Overridepublic <T> T deserialize(byte[] bytes, Class<T> classType) throws IOException {T obj = OBJECT_MAPPER.readValue(bytes, classType);if (obj instanceof RpcRequest) {return handleRequest((RpcRequest) obj, classType);}if (obj instanceof RpcResponse) {return handleResponse((RpcResponse) obj, classType);}return obj;}/*** 由于 Object 的原始对象会被擦除,导致反序列化时会被作为 LinkedHashMap 无法转换成原始对象,因此这里做了特殊处理** @param rpcRequest rpc 请求* @param type       类型* @return {@link T}* @throws IOException IO异常*/private <T> T handleRequest(RpcRequest rpcRequest, Class<T> type) throws IOException {Class<?>[] parameterTypes = rpcRequest.getParameterTypes();Object[] args = rpcRequest.getArgs();// 循环处理每个参数的类型for (int i = 0; i < parameterTypes.length; i++) {Class<?> clazz = parameterTypes[i];// 如果类型不同,则重新处理一下类型if (!clazz.isAssignableFrom(args[i].getClass())) {byte[] argBytes = OBJECT_MAPPER.writeValueAsBytes(args[i]);args[i] = OBJECT_MAPPER.readValue(argBytes, clazz);}}return type.cast(rpcRequest);}/*** 由于 Object 的原始对象会被擦除,导致反序列化时会被作为 LinkedHashMap 无法转换成原始对象,因此这里做了特殊处理** @param rpcResponse rpc 响应* @param type        类型* @return {@link T}* @throws IOException IO异常*/private <T> T handleResponse(RpcResponse rpcResponse, Class<T> type) throws IOException {// 处理响应数据byte[] dataBytes = OBJECT_MAPPER.writeValueAsBytes(rpcResponse.getData());rpcResponse.setData(OBJECT_MAPPER.readValue(dataBytes, rpcResponse.getDataType()));return type.cast(rpcResponse);}
    }
    • hessian序列化器
    package com.jerry.rpccore.serializer;import com.caucho.hessian.io.HessianInput;
    import com.caucho.hessian.io.HessianOutput;import java.io.ByteArrayInputStream;
    import java.io.ByteArrayOutputStream;
    import java.io.IOException;/*** Hessian 序列化器*/
    public class HessianSerializer implements Serializer {@Overridepublic <T> byte[] serialize(T object) throws IOException {ByteArrayOutputStream bos = new ByteArrayOutputStream();HessianOutput ho = new HessianOutput(bos);ho.writeObject(object);return bos.toByteArray();}@Overridepublic <T> T deserialize(byte[] bytes, Class<T> tClass) throws IOException {ByteArrayInputStream bis = new ByteArrayInputStream(bytes);HessianInput hi = new HessianInput(bis);return (T) hi.readObject(tClass);}
    }
    
2-动态使用序列化器
  • 首先建立序列化器名称的常量,使用接口类型实现
/*** @version 1.0* @Author jerryLau* @Date 2024/4/9 16:33* @注释 系列化键值对常量*/
public interface SerializerKeys {String JDK = "jdk";String HESSIAN = "hessian";String JSON = "json";String KRYO = "kryo";
}
  • 建立序列化器工厂

对于序列化器而言,是可以重复使用,没有必要用一次就创建一个新的对象,所欲可以使用工厂模式+单例模式简化创建序列化对象的操作

序列化工厂代码如下,优先使用Map存储相关的序列化对象信息

package com.jerry.rpccore.serializer;import com.jerry.rpccore.utils.SPIloaderUtils;/*** @version 1.0* @Author jerryLau* @Date 2024/4/29 16:33* @注释 序列化工厂 用于获取系列化器*/
public class SerializerFactory {/**** 序列化器映射表*/private static final Map<String, Serializer> SERIALIZER_MAP = new HashMap<String, Serializer>() {{put(SerializerKeys.JDK, new JDKSerializer());put(SerializerKeys.KRYO, new KryoSerializer());        			put(SerializerKeys.HESSIAN, new HessianSerializer());put(SerializerKeys.JSON, new JsonSerializer());}};/*** 默认序列化器 JDK序列化器*/private static final Serializer DEFAULT_SERIALIZER = new JDKSerializer();/*** 获取序列化器** @param key 序列化器名称* @return 序列化器*/public static Serializer getInstance(String key) {if (key == null) {return DEFAULT_SERIALIZER;}return SPIloaderUtils.getInstance(Serializer.class, key);}}
  • 在全局配置中配置初始化默认的序列化器
.../**** 默认序列化器* 默认使用jdk序列化器*/private String serializer = SerializerKeys.JDK;
...
  • 动态获取序列化器

之前在动态代理的位置,手动指定使用哪一种序列化器,现在要将之前代码中的手动设置序列化器的部分,修改成为 使用工厂+读取配置来获取实现类

主要涉及的类有两个

rpccore模块中的:ServiceProxy

producer模块中的:HttpServerHandler

 // 指定序列化器final Serializer serializer = SerializerFactory.getInstance(RPCGlobalConfHolder.getRpcConfig().getSerializer());
3-自定义序列化器

使用自定义的 SPI机制实现,支持用户自定义序列化器并指定键名

  • 指定 SPI 配置目录

系统内置的 SPI机制会加载 resources 资源目录下的 META-INF/services 目录,那我们自定义的序列化器可以如法炮制,改为读取 META-INF/rpc 目录。

还可以将 SPI 配置再分为系统内置 SPI 和用户自定义 SPI,即目录如下:

  • 用户自定义 SPI:META-INF/rpc/customd :用户可以在该目录下新建配置
  • 系统内置 SPI:META-INF/rpc/systemd:RPC 框架自带的实现类,比如我们之前开发好的 JdkSerializer 。

这样一来,所有接口的实现类都可以通过 SPI动态加载,不用在代码中硬编码 Map 来维护实现类了。编写一个系统扩展配置文件,内容为我们之前写好的序列化器。
文件名称为 com.jerry.rpccore.serializer.Serializer

代码如下:

#系统内置序列化器配置参数
jdk:com.jerry.rpccore.serializer.JDKSerializer
hessian:com.jerry.rpccore.serializer.HessianSerializer
json:com.jerry.rpccore.serializer.JsonSerializer
kryo:com.jerry.rpccore.serializer.KryoSerializer
  • 手动实现SpiLoader,进行配置文件的加载

所谓SpiLoader相当于是一个工具类,主要目的是加载用户自定义的序列化器配置或者系统内置的序列化器配置

其主要功能如下:

1.用 Map 来存储已加载的配置信息 键名 => 实现类 。
2.扫描指定路径,读取每个配置文件,获取到 键名 =>实现类 信息并存储在 Map 中。
3.定义获取实例方法,根据用户传入的接口和键名,从 Map 中找到对应的实现类,然后通过反射获取到实现类对象。可以维护一个对象实例缓存,创建过一次的对象从缓存中读取可。

具体代码如下:

package com.jerry.rpccore.utils;import cn.hutool.core.io.resource.ResourceUtil;
import com.jerry.rpccore.serializer.Serializer;
import lombok.extern.slf4j.Slf4j;import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;/*** @version 1.0* @Author jerryLau* @Date 2024/4/30 8:54* @注释 SPI加载器工具类* <p>* 加载系统以及用户自定义的SPI实现类*/
@Slf4j
public class SPIloaderUtils {/**** 存储已加载的SPI实现类 接口名 -> 实现类名 -> 实现类*/private static Map<String, Map<String, Class<?>>> SPI_MAP = new ConcurrentHashMap<String, Map<String, Class<?>>>();/**** 存储已实例化的SPI实现类(避免重新创建) 接口名 -> 实现类名 -> 实现类实例*/private static Map<String, Object> SPI_INSTANCE_MAP = new ConcurrentHashMap<String, Object>();/**** 系统初始化时,加载系统默认的SPI实现类目录*/private static final String SPI_DEFAULT_PATH = "META-INF/rpc/systemd/";/**** 用户自定义的SPI实现类目录*/private static final String SPI_USER_PATH = "META-INF/rpc/customd/";/**** 扫描路径*/private static final String[] SCAN_PATHS = {SPI_DEFAULT_PATH, SPI_USER_PATH};/**** 动态加载的类列表*/private static final List<Class<?>> CLASS_LIST = Arrays.asList(Serializer.class);/**** 加载所有SPI实现类*/public static void loadAllSPI() {for (Class<?> clazz : CLASS_LIST) {log.info("load all SPI class");loadSPI(clazz);}}/****获取某个接口的实例* @param tClass* @param KEY* @return* @param <T>*/public static <T> T getInstance(Class<T> tClass, String KEY) {String tClassName = tClass.getName();Map<String, Class<?>> stringClassMap = SPI_MAP.get(tClassName);if (stringClassMap == null) {//未获取到SPI实现类throw new RuntimeException(" SPIloader: not found SPI implement class for " + tClassName);}if (!stringClassMap.containsKey(KEY)) {throw new RuntimeException(" SPIloader: tClass " + tClassName + " not found key " + KEY);}//获取要加载的实现类型Class<?> aClass = stringClassMap.get(KEY);//判断是否已经实例化过String name = aClass.getName();if (!SPI_INSTANCE_MAP.containsKey(name)) {//未实例化过,实例化并放入缓存try {Object instance = aClass.newInstance();SPI_INSTANCE_MAP.put(name, instance);} catch (Exception e) {throw new RuntimeException(" SPIloader: create instance error " + e.getMessage());}}return (T) SPI_INSTANCE_MAP.get(name);}/**** 加载SPI实现类* @param clazz SPI接口类*/public static Map<String, Class<?>> loadSPI(Class<?> clazz) {log.info("load SPI implement class for " + clazz.getName());HashMap<String, Class<?>> keyClassMap = new HashMap<>();for (String scanPath : SCAN_PATHS) {//扫描SPI实现类System.out.println("scanPath + clazz.getName():"+scanPath + clazz.getName());List<URL> resources = ResourceUtil.getResources(scanPath + clazz.getName());for (URL resource : resources) {try {InputStreamReader inputStreamReader = new InputStreamReader(resource.openStream());BufferedReader bufferedReader = new BufferedReader(inputStreamReader);String line;while ((line = bufferedReader.readLine()) != null) {if (line.startsWith("#")) {continue;}String[] split = line.split(":");if (split.length == 2) {String key = split[0].trim();String className = split[1].trim();try {Class<?> aClass = Class.forName(className);keyClassMap.put(key, aClass);} catch (ClassNotFoundException e) {throw new RuntimeException(e);}}}bufferedReader.close();inputStreamReader.close();} catch (IOException e) {log.error("load SPI implement class error " + e.getMessage());throw new RuntimeException(e);}}}SPI_MAP.put(clazz.getName(), keyClassMap);return keyClassMap;}
}

上述代码中,虽然提供了 loadAllSPI 方法,扫描所有路径下的文件进行加载,但其实没必要使用。更推荐使用 loadSPI 方法,按需加载指定的类。

注意,上述代码中获取配置文件是使用了ResourceUtil.getResources ,而不是通过文件路径获取。因为如果框架作为依赖被引入,是无法得到正确文件路径的,

  • 重构序列化器工厂

将之前的自定义的map修改成为加载序列化器

 /**** 序列化器映射表*/
//    private static final Map<String, Serializer> SERIALIZER_MAP = new HashMap<String, Serializer>() {{
//        put(SerializerKeys.JDK, new JDKSerializer());
//        put(SerializerKeys.KRYO, new KryoSerializer());
//        put(SerializerKeys.HESSIAN, new HessianSerializer());
//        put(SerializerKeys.JSON, new JsonSerializer());
//    }};static {SPIloaderUtils.loadSPI(Serializer.class);}

使用静态代码块,在工厂首次加载时,就会调用 Spiloader 的 load 方法加载序列化器接口的所有实现类,之后就可以通过调用 getlnstance 方法获取指定的实现类对象了。

测试

application.properties 改用如下配置

RPC.name=apeRpc
RPC.version=V0.0.2
RPC.serverPort=8080
RPC.mock=false
RPC.serializer=hessian

启动生产者和消费者发现能够获取到配置的序列化器,同时可以正常交互

在这里插入图片描述
在这里插入图片描述


至此,我们实现了简易版的PRC框架中的自定义序列化器功能

码字不易,希望大家能够一键三连🌝⭐🌟


代码仓库 ape-rpc: 轮子项目,手动实现rpc github🌐 || ape-rpc: 轮子项目,手动实现rpc gitee🌐

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/9045.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【6D位姿估计】FoundationPose 跑通demo 训练记录

前言 本文记录在FoundationPose中&#xff0c;跑通基于CAD模型为输入的demo&#xff0c;输出位姿信息&#xff0c;可视化结果。 然后分享NeRF物体重建部分的训练&#xff0c;以及RGBD图为输入的demo。 1、搭建环境 方案1&#xff1a;基于docker镜像&#xff08;推荐&#xf…

重置密码之后无法ssh登录

背景描述 我这边有个服务器S&#xff0c;我从ServerA可以ssh上去&#xff0c;但是我从堡垒机B无法ssh上去&#xff1b;一开始以为是密码问题&#xff0c;手动重置密码&#xff0c;但是依然无法登录进去&#xff1b;一直提示密码错误&#xff1b;改了好几次密码都不行 问题原因…

5.9号模拟前端面试10问

5.9号模拟前端面试10问 1.html语义化的理解 HTML语义化是指使用具有明确含义的HTML标签来描述内容&#xff0c;而不仅仅是使用<div>和<span>等通用容器标签。语义化的HTML代码更易于阅读和维护&#xff0c;同时也有助于搜索引擎优化&#xff08;SEO&#xff09;。…

达梦数据库限制用户登录IP测试

达梦数据库创建用户时可以限制登录ip和时间段。 创建测试测试用户 create user test1 identified by Test_1234 ALLOW_IP "192.168.100.101"; 限定该用户只能通过192.168.100.101地址登录数据库 连接测试 上图可见&#xff0c;192.168.100.101客户端可以连接上19…

wish、亚马逊怎么给店铺引流?怎么运用自养号测评提高流量的转化率?

作为全球知名的跨境电商平台&#xff0c;wish、亚马逊为卖家提供了一个拓展海外市场的机会。然而&#xff0c;在wish、亚马逊平台上建立和经营一家成功的店铺需要有效的引流策略。那么&#xff0c;Wish、亚马逊怎样才能给店铺引流呢&#xff1f; 一、Wish、亚马逊怎么给店铺引…

C++学习笔记——仿函数

文章目录 仿函数——思维导图仿函数是什么仿函数的优势理解仿函数仿函数的原理举例 仿函数——思维导图 仿函数是什么 使用对象名调用operator&#xff08;&#xff09;函数看起来像是在使用函数一样&#xff0c;因此便有了仿函数的称呼&#xff1b;仿函数存在的意义是&#x…

javaMail快速部署——发邮件喽~

目录 功能阐述 前序步骤 &#xff08;1&#xff09;到QQ邮箱中获取到授权码 代码实现 坑 今天在写一个修改密码的功能的时候要用到邮箱的发送&#xff0c;然后因为这个项目比较老旧了&#xff0c;采用的是javaWeb和jsp的配置&#xff0c;对于我只使用过springBoot整合的ja…

苹果新款 M4 芯片专注于 AI

爆炸性消息&#xff01;苹果的新一代 M4 芯片来了&#xff01;这家伙拥有 38 万亿次操作的超强神经引擎&#xff0c;速度比苹果 A11 芯片的 NPU 快 60 倍&#xff01;虽然它的速度还没有达到 Snapdragon X Elite 的 45 TOPS&#xff0c;但苹果自夸 M4 将提供与最新 PC 芯片相同…

带你入门React

目录 前言一&#xff0c;基本配置1.1 环境搭建1.2 页面初始化渲染二&#xff0c;基础学习2.1 结构与样式开发2.2 数据展示2.3 行内样式2.4 条件渲染2.5 列表渲染2.6 点击事件 三&#xff0c;页面更新3.1 组件数据3.2 组件数据共享 总结 前言 笔者之前的工作经验都局限于Vue&am…

ICode国际青少年编程竞赛- Python-2级训练场-for循环中的变量

ICode国际青少年编程竞赛- Python-2级训练场-for循环中的变量 1、 for i in range(4):Dev.turnLeft()# 将i1作为Dev移动的步数Dev.step(i 1)2、 for i in range(4):Spaceship.step(i 1)Dev.step(3)Dev.step(-3)3、 for i in range(5):Dev.step(5 - i)Dev.turnRight()4、 …

开源文档管理系统Paperless-ngx如何在Linux系统运行并发布至公网

文章目录 1. 部署Paperless-ngx2. 本地访问Paperless-ngx3. Linux安装Cpolar4. 配置公网地址5. 远程访问6. 固定Cpolar公网地址7. 固定地址访问 Paperless-ngx是一个开源的文档管理系统&#xff0c;可以将物理文档转换成可搜索的在线档案&#xff0c;从而减少纸张的使用。它内置…

【Pytorch】1.读取训练数据集

导入Dataset类 from torch.utils.data import Dataset # 注意是Dataset&#xff08;大写&#xff09;的才是类通过jupyter我们可以阅读一下Dataset类的具体使用方法 help(Dataset) # 或者直接 Dataset??我们可以看到具体对Dataset类的解释 从蓝色字体我们可以得出 所有的代…

释放创造力,低成本实现您的梦想应用 —— 尽在我们的开源低代码平台!

在数字化时代&#xff0c;每个企业都渴望拥有自己的专属应用&#xff0c;但传统开发模式的高成本和技术壁垒让许多梦想搁浅。现在&#xff0c;我们为您带来了革命性的解决方案 —— 一个开源、免费、且功能强大的低代码开发平台&#xff01; 为什么选择我们的低代码平台&#…

QGraphicsView实现简易地图12『平移与偏移』

前文链接&#xff1a;QGraphicsView实现简易地图11『指定层级-定位坐标』 提供地图平移与偏移功能。地图平移是指将地图的中心点更改为给定的点&#xff0c;即移动地图到指定位置。地图偏移是指将当前视口内的地图向上/下/左/右/进行微调&#xff0c;这里偏移视口宽/高的四分之…

【ArcGIS 脚本工具】格式化简单渲染图层或图层组

CAD加GIS是规划人的黄金搭档&#xff0c;不可偏废。 小编通常直接在ArcPro中加载CAD查看&#xff0c;这样可以保证CAD修改之后GIS能同步更新显示。 但是CAD在ArcPro中的显示多少有点水土不服。 比如湘源地块在ArcPro3.0中显示时会自动加上透明度&#xff0c;虽然这样可以看到…

汇集全球顶级AI的自助平台

1、介绍:此平台以其开放和便捷的特性,为用户提供了一个无需月费的 AI 服务入口。咱可以根据自己的需求,灵活选择和付费使用平台上的 AI 技术。 该平台强调的核心优势在于 “零门槛” 和 “按需付费”,意味着用户不需要进行大额预付或者承担长期的固定费用,而是可以根据实际…

利用爬虫解决数据采集难题

文章目录 安装为什么选择 BeautifulSoup 和 requests&#xff1f;安装 BeautifulSoup 和 requests解决安装问题 示例总结 在现代信息时代&#xff0c;数据是企业决策和发展的关键。然而&#xff0c;许多有用的数据分散在网络上&#xff0c;且以各种格式和结构存在&#xff0c;因…

Could not find the Qt platform plugin “dxcb“ in ““、 重点:是dxcb

这个重点就在于是dxcb不是xcb&#xff0c;让我一顿好找。 https://bugs.launchpad.net/ubuntu/source/deepin-qt5dxcb-plugin/bug/1826629 这篇文章描述了应该是deepin系统的一个问题&#xff0c;应该已经修复了不知道为什么我还会遇到。 不过知道是dxcb后直接去qtcreater里的系…

ROS 2边学边练(45)-- 构建一个能动的机器人模型

前言 在上篇中我们搭建了一个机器人模型(其由各个关节&#xff08;joint&#xff09;和连杆&#xff08;link&#xff09;组成)&#xff0c;此篇我们会通过设置关节类型来实现机器人的活动。 在ROS中&#xff0c;关节一般有无限旋转&#xff08;continuous&#xff09;,有限旋转…

Android 注解

自定义注解 注解原理 注解本质是一个接口&#xff0c;Java中所有注解都是继承了Annotation接口的 注解(…)&#xff1a;其实就是一个实现类对象&#xff0c;实现了该注解以及Annotation接口。