Isaac Sim 3(学习笔记5.8)

Isaac Sim 利用深度学习获取mask掩码图

参考内容

Kubernetes官网

在 Linux 系统中安装并设置 kubectl | Kubernetes准备开始 kubectl 版本和集群版本之间的差异必须在一个小版本号内。 例如:v1.30 版本的客户端能与 v1.29、 v1.30 和 v1.31 版本的控制面通信。 用最新兼容版的 kubectl 有助于避免不可预见的问题。在 Linux 系统中安装 kubectl 在 Linux 系统中安装 kubectl 有如下几种方法:用 curl 在 Linux 系统中安装 kubectl 用原生包管理工具安装 用其他包管理工具安装 用 curl 在 Linux 系统中安装 kubectl 用以下命令下载最新发行版:x86-64 ARM64 curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl" curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/arm64/kubectl" 说明: 如需下载某个指定的版本,请用指定版本号替换该命令的这一部分: $(curl -L -s https://dl.k8s.io/release/stable.txt)。例如,要在 Linux x86-64 中下载 1.30.0 版本,请输入:curl -LO https://dl.k8s.io/release/v1.30.0/bin/linux/amd64/kubectl 对于 Linux ARM64 来说,请输入:icon-default.png?t=N7T8https://kubernetes.io/zh-cn/docs/tasks/tools/install-kubectl-linux/使用Isaac Sim进行DNN图像分割教程

Tutorial for DNN Image Segmentation with Isaac Sim — isaac_ros_docs documentationicon-default.png?t=N7T8https://nvidia-isaac-ros.github.io/concepts/segmentation/unet/tutorial_isaac_sim.html设置开发环境等

isaac_ros_unet — isaac_ros_docs documentationicon-default.png?t=N7T8https://nvidia-isaac-ros.github.io/repositories_and_packages/isaac_ros_image_segmentation/isaac_ros_unet/index.html#quickstartDeveloper Environment Setup — isaac_ros_docs documentationicon-default.png?t=N7T8https://nvidia-isaac-ros.github.io/getting_started/dev_env_setup.html安装NVIDIA容器工具包

Installing the NVIDIA Container Toolkit — NVIDIA Container Toolkit 1.15.0 documentationicon-default.png?t=N7T8https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#prerequisites

一.设置Docker、安装NVIDIA工具包、容器部署

这里我在别的地方写过,在下方链接的第二章内容中

Ubuntu20.04 ISAAC SIM仿真下载使用流程_ubuntu启动isaac sim后一直有rtx loading界面-CSDN博客文章浏览阅读1.4k次,点赞38次,收藏30次。Ubuntu20.04 ISAAC SIM仿真下载使用流程机器:华硕天选X2024显卡:4060Tiubuntu20.04安装显卡驱动版本:525.85.05_ubuntu启动isaac sim后一直有rtx loading界面https://blog.csdn.net/weixin_61044335/article/details/137866781?spm=1001.2014.3001.5501说实在的我不知道为什么nvidia不同文档写的下载的内容不一样,哪个是必要,哪个是不必要也不清晰,没办法我先把以前做过的东西放在这儿,我再去跟着官网走一遍捋一捋

二.跟着官网再走一次

我因为想拿到图像分割的掩码,于是跟着官网走Tutorial for DNN Image Segmentation with Isaac Sim — isaac_ros_docs documentation

提示要先完成isaac_ros_unet — isaac_ros_docs documentation 中1~9的内容,于是我又去这个网站

这里又要我根据 Developer Environment Setup — isaac_ros_docs documentation 说明来设置开发环境,好吧继续

在上文链接中我已经配置好了docker,继续走下一步

接下来是https://nvidia-isaac-ros.github.io/getting_started/dev_env_setup.html中的环境设置部分:

  1. On x86_64 platforms:

    1. Install the nvidia-container-toolkit using the instructions.

    2. Configure nvidia-container-toolkit for Docker using the instructions.

    On Jetson platforms: Follow this instruction to first set your Jetson up with SSD, then come back to this document and resume from Step 2.

  2. Restart Docker:

    sudo systemctl daemon-reload && sudo systemctl restart docker
  3. Install Git LFS to pull down all large files:

    sudo apt-get install git-lfs
    git lfs install --skip-repo
  4. Create a ROS 2 workspace for experimenting with Isaac ROS:

    For Jetson setup with SSD as optional storage:

    mkdir -p  /ssd/workspaces/isaac_ros-dev/src
    echo "export ISAAC_ROS_WS=/ssd/workspaces/isaac_ros-dev/" >> ~/.bashrc
    source ~/.bashrc
    
    mkdir -p  ~/workspaces/isaac_ros-dev/src
    echo "export ISAAC_ROS_WS=${HOME}/workspaces/isaac_ros-dev/" >> ~/.bashrc
    source ~/.bashrc
    

    We expect to use the ISAAC_ROS_WS environmental variable to refer to this ROS 2 workspace directory, in the future.

To further customize your development environment, check out this guide.

很好走完了,接下来去做图像分割的前置步骤:

  1. Clone isaac_ros_common and this repository under ${ISAAC_ROS_WS}/src.

    cd ${ISAAC_ROS_WS}/src
    
    git clone https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_common.git
    
    git clone https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_image_segmentation.git
    
  2. Pull down a ROS Bag of sample data:

    cd ${ISAAC_ROS_WS}/src/isaac_ros_image_segmentation && \git lfs pull -X "" -I "resources/rosbags/"
    
  3. Launch the Docker container using the run_dev.sh script:

    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \./scripts/run_dev.sh
    
  4. Install this package’s dependencies.

sudo apt-get install -y ros-humble-isaac-ros-unet ros-humble-isaac-ros-triton ros-humble-isaac-ros-dnn-image-encoder
  1. Download the PeopleSemSegNet ShuffleSeg ETLT file and the int8 inference mode cache file:

    mkdir -p /tmp/models/peoplesemsegnet_shuffleseg/1 && \cd /tmp/models/peoplesemsegnet_shuffleseg && \wget https://api.ngc.nvidia.com/v2/models/nvidia/tao/peoplesemsegnet/versions/deployable_shuffleseg_unet_v1.0/files/peoplesemsegnet_shuffleseg_etlt.etlt && \wget https://api.ngc.nvidia.com/v2/models/nvidia/tao/peoplesemsegnet/versions/deployable_shuffleseg_unet_v1.0/files/peoplesemsegnet_shuffleseg_cache.txt
    
  2. Convert the ETLT file to a TensorRT plan file:

    /opt/nvidia/tao/tao-converter -k tlt_encode -d 3,544,960 -p input_2:0,1x3x544x960,1x3x544x960,1x3x544x960 -t int8 -c peoplesemsegnet_shuffleseg_cache.txt -e /tmp/models/peoplesemsegnet_shuffleseg/1/model.plan -o argmax_1 peoplesemsegnet_shuffleseg_etlt.etlt
    
  3. Create a file called /tmp/models/peoplesemsegnet_shuffleseg/config.pbtxt by copying the sample Triton config file:

    cp /workspaces/isaac_ros-dev/src/isaac_ros_image_segmentation/resources/peoplesemsegnet_shuffleseg_config.pbtxt /tmp/models/peoplesemsegnet_shuffleseg/config.pbtxt
    
  4. Run the following launch files to spin up a demo of this package:

    ros2 launch isaac_ros_unet isaac_ros_unet_triton.launch.py model_name:=peoplesemsegnet_shuffleseg model_repository_paths:=['/tmp/models'] input_binding_names:=['input_2:0'] output_binding_names:=['argmax_1'] network_output_type:='argmax' input_image_width:=1200 input_image_height:=632
    

    Then open another terminal, and enter the Docker container again:

    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \./scripts/run_dev.sh
    

    Then, play the ROS bag:

    ros2 bag play -l src/isaac_ros_image_segmentation/resources/rosbags/unet_sample_data/
    
  5. Visualize and validate the output of the package by launching rqt_image_view in another terminal: In a third terminal, enter the Docker container again:

    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \./scripts/run_dev.sh
    

    Then launch rqt_image_view:

    ros2 run rqt_image_view rqt_image_view
    

    Then inside the rqt_image_view GUI, change the topic to /unet/colored_segmentation_mask to view a colorized segmentation mask.

https://media.githubusercontent.com/media/NVIDIA-ISAAC-ROS/.github/main/resources/isaac_ros_docs/repositories_and_packages/isaac_ros_image_segmentation/isaac_ros_unet/peoplesemsegnet_shuffleseg_rqt.png/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/8722.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NodeMCU ESP8266 操作 SSD1306 OLED显示屏详解(图文并茂)

文章目录 1 模块介绍2 接线介绍3 安装SSD1306驱动库4 源码分析4.1 硬件兼容性4.2 可能存在的问题总结1 模块介绍 我们将在本教程中使用的OLED显示屏是SSD1306型号:单色0.96英寸显示屏,像素为12864,如下图所示。 OLED显示屏不需要背光,这在黑暗环境中会产生非常好的对比度。…

三轴加速度计LIS2DUX12开发(3)----计步器

三轴加速度计LIS2DUX12开发.3--轮询获取加速度数据 计步器硬件准备视频教学样品申请源码下载步数检测说明通信模式管脚定义IIC通信模式速率生成STM32CUBEMXIIC配置INT配置串口配置CS和SA0设置串口重定向参考程序初始换管脚获取ID复位操作BDU设置设置传感器的量程启用步数计和嵌…

矩阵:一个用于大型语言模型的贝氏学习模型

在本文中,作者介绍了一个贝氏学习模型来理解大型语言模型(LLM)的行为。他们探讨了基于预测下一个token的LLM优化指标,并开发了一个以此原理为基础的新颖模型。他们的方法涉及构建一个理想的生成文本模型,该模型由具有先…

能否直接上手 Qt ?——看完 C++ 课本后怎么做?

在开始前我有一些资料,是我根据网友给的问题精心整理了一份「Qt的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!如果你已经阅读了 C 课本,但仍然感到…

一键复制:基于vue实现的tab切换效果

需求&#xff1a;顶部栏有切换功能&#xff0c;内容区域随顶部切换而变化 目录 实现效果实现代码使用示例在线预览 实现效果 如下 实现代码 组件代码 MoTab.vue <template><div class"mo-tab"><divv-for"item in options"class"m…

关系型数据库MySQL开发要点之多表查询2024详解

多表查询 准备测试数据 -- 部门管理 create table tb_dept(id int unsigned primary key auto_increment comment 主键ID,name varchar(10) not null unique comment 部门名称,create_time datetime not null comment 创建时间,update_time datetime not null comment 修改时…

网络安全公司观察,看F5如何将安全化繁为简

应用无处不在的当下&#xff0c;从传统应用到现代应用再到边缘、多云、多中心的安全防护&#xff0c;安全已成为企业数字化转型中的首要挑战。根据IDC2023年《全球网络安全支出指南》&#xff0c;2022年度中国网络安全支出规模137.6亿美元&#xff0c;增速位列全球第一。有专家…

使用 docker-compose 编排 lnmp(dockerfile) 完成 wordpress

一、使用 docker-compose 编排 lnmp(dockerfile) 完成 wordpress 环境准备 ##修改主机名 hostnamectl set-hostname lyh bash [rootlyh ~]###关闭防火墙及核心防护 systemctl stop firewalld ##关闭核心防护 setenforce 0 ##关闭核心防护##安装Docker-20…

3.控速,红外传感

1.基础知识 2.小车转速代码 int leftX 11; int rightX 12;void carInit() {// put your setup code here, to run once:pinMode(2, OUTPUT); // 配置2口为输出引脚pinMode(3, OUTPUT); // 配置3口为输出引脚//右轮信号方向初始化pinMode(4, OUTPUT); // 配置4口为输出引脚pi…

JavaEE技术之MySql高级-ShardingSphere5(SpringBoot版本:3.0.5)

文章目录 1 ShardingSphere-JDBC读写分离1.1 创建SpringBoot程序1.1.1、创建项目1.1.2、添加依赖1.1.3、创建实体类1.1.4、创建Mapper1.1.5、配置 Spring Boot1.1.6、配置shardingsphere 1.2 测试1.2.1 读写分离测试1.2.2 负载均衡测试1.2.3 事务测试常见错误 2 ShardingSphere…

使用ffmpeg对视频进行转码(支持浏览器播放)

在开发中&#xff0c;算法保存的mp4视频文件通过路径打开该视频发现视频播放不了&#xff0c;需要转码进行播放。使用java代码进行转码。代码如下&#xff0c;inputFilePath是转之前的视频路径&#xff0c;outputFilePath是转之后的视频路径。ffmpeg命令中libx264也可以改为其它…

泉州晋江厦门拉货最便宜的7个方式,建议收藏

众所周知&#xff0c;搬家、拉货的时间长、距离长&#xff0c;运费也比较贵。面对不菲的费用&#xff0c;很多人会比较谨慎&#xff0c;先网上搜搬家攻略&#xff0c;一番对比以后&#xff0c;找到最便宜的运输方式。那怎么运输最便宜最放心呢&#xff1f; 方式一&#xff1a;找…

【iOS】-- 内存五大分区

【iOS】-- 内存五大分区 内存五大分区1.栈区优点&#xff1a; 2.堆区优点&#xff1a; 3.全局区4.常量区5.代码区 验证static、extern、const关键字比较1.static关键字static关键字的作用&#xff1a;全局静态变量局部静态变量 2.extern关键字对内的全局变量对外的全局变量 3.c…

历代著名画家作品赏析-东晋顾恺之

中国历史朝代顺序为&#xff1a;夏朝、商朝、西周、东周、秦朝、西楚、西汉、新朝、玄汉、东汉、三国、曹魏、蜀汉、孙吴、西晋、东晋、十六国、南朝、刘宋、南齐、南梁、南陈、北朝、北魏、东魏、北齐、西魏、北周、隋&#xff0c;唐宋元明清&#xff0c;近代。 一、东晋著名…

ssm+vue的私人健身和教练预约管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的私人健身和教练预约管理系统(有报告)。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通…

Yolov8实现loopy视频识别

1、前言 loopy是一个非常可爱的动漫角色&#xff08;可爱粉色淀粉肠&#xff09;&#xff0c;闲来无事&#xff0c;打算用yolov8训练一个模型对loopy进行识别。 2、准备工作 先在网络上搜寻很多loopy的图片&#xff0c;然后将图片导入Lablel Studio软件进行标注&#xff0c;并…

三、VGA接口驱动与图像显示动态移动

文章目录 一、参数介绍二、彩条显示2.1 模块系统架构框图2.2 行、场同步波形:2.3 代码三、VGA 图像显示动态移动3.1波形设计3.2代码 一、参数介绍 对于普通的 VGA 显示器&#xff0c;共有 5 个信号&#xff1a;R、G、B 三基色&#xff1b;HS&#xff08;行同步信号&#xff09…

remmina无法连接远程桌面,Remmina无法连接远程桌面的原因与解决办法

在解决Remmina无法连接远程桌面的问题时&#xff0c;我们需要考虑多种可能的原因&#xff0c;并采取相应的解决办法。以下是一些常见的原因及其对应的解决方案&#xff1a; 1、网络问题 原因&#xff1a;不稳定的网络连接或中断可能导致无法建立远程桌面连接。 解决办法&#x…

ICode国际青少年编程竞赛- Python-1级训练场-变量练习

ICode国际青少年编程竞赛- Python-1级训练场-变量练习 1、 a 8 for i in range(8):Dev.step(a)Dev.turnRight()a - 12、 a 3 for i in range(4):Dev.step(a)Dev.turnRight()a a 1 Dev.step(5)3、 a 4 for i in range(4):Dev.step(2)Dev.step(-5)Dev.step(3)Spaceship.…

FreeRTOS学习笔记-基于stm32(6)时间片调度实验

1、什么是时间片调度 在任务优先级相同的时候&#xff0c;CPU会轮流使用相同的时间去执行它&#xff0c;即时间片调度。这个相同的时间就是时间片。而时间片的大小就是SysTick的中断周期&#xff08;SysTick的中断周期可以修改&#xff09;。 比如有三个相同优先级的任务在运行…