注册网站获取网易邮箱安全码/今日刚刚发生的新闻

注册网站获取网易邮箱安全码,今日刚刚发生的新闻,廊坊网站建设-商昊网络,wordpress会员登录界面美化网站: TOP100榜 - 猫眼电影 - 一网打尽好电影 本次案例所需用到的模块 requests (发送HTTP请求) pandas(数据处理和分析 保存数据) parsel(解析HTML数据) pyecharts(数据可视化图表) pymysql(连接和操作MySQL数据库) lxml(数据解析模块) 确定爬取的内容: 电影名称 电影主演…

网站: TOP100榜 - 猫眼电影 - 一网打尽好电影
 

本次案例所需用到的模块
requests (发送HTTP请求)

pandas(数据处理和分析 保存数据)

parsel(解析HTML数据) 

pyecharts(数据可视化图表)

pymysql(连接和操作MySQL数据库)

lxml(数据解析模块)


确定爬取的内容:

  1. 电影名称

  2. 电影主演

  3. 上映时间

  4. 评分

分析页面:

确认是静态数据还是动态数据
右击打开网页源代码   快捷键Ctrl+F 打开搜索框 搜索需要爬取的数据

可以发现 此数据为静态数据  即所需要的数据都在网页上面

爬取步骤:

一.发送请求 模拟浏览器向服务器发送请求

二. 解析数据   从网页中提取数据

三. 保存数据  将爬取到的数据保存为本地文件

OK 我们开始写代码
将浏览器的url地址复制 构建请求头参数
此网站需要登陆 才能拿到数据 请求体中一般包含三个数据 UA(浏览器的基本信息) referer(就是防盗链 即当前页面通过哪个页面跳转过来的)  cookie(用户的一些基本信息)

# 导包
import requestsurl = 'https://www.maoyan.com/board/4?timeStamp=1741780786427&channelId=40011&index=2&signKey=30a132dd14a76c19cfd2759ba27adc28&sVersion=1&webdriver=false'headers = {'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36 Edg/134.0.0.0','referer':'https://www.maoyan.com/','cookie':'你的cookie'}
resp = requests.get(url,headers=headers)
print(resp.text)

打印我们从浏览器爬取下来的信息
Ctrl+F 快捷键 搜索确认 数据在返回的信息中 

第二步 解析数据

打开开发者工具中的元素 用左上角的小箭头去查看页面的结构

定位元素 拿到对应的class属性值  采取parserl模块里面的css 的来提取数据

我们可以看到  爬取下来的内容中 有空格 缩进
处理办法: 转换成字符串类型的格式 然后使用strip()方法 去掉空格 replace 替换方法去除不要的文字  只保留主演名字

movie_time = li.css('.releasetime::text').get().replace('上映时间:', '')
# 上映时间也一样 只保留时间

最后 这个评分是分开的  需要做个字符串的拼接

getall() 拿到所有满足条件的class属性为score 下面i 标签中的文本  其返回的是个列表 通过对列表取值 就可以拿到这两个分开的评分  最后拼接起来 输出打印莫问题

movie_s = li.css('.score i::text').getall()[0]
movie_ore = li.css('.score i::text').getall()[-1]
movie_score = movie_s + movie_ore

所有的信息提取完毕 接下来我们保存数据

三.保存数据

将数据存储在字典中  在外面定义一个空列表  最后将字典添加到列表中

data = []dit = {'电影名': movie_name,'主演': movie_actor,'上映时间': movie_time,'评分': movie_score
}
data.append(dit)

最后听过pandas 保存数据  

# 传入我们的列表 设置索引列为false 即不生成额外的一列索引
pd.DataFrame(data).to_excel('Top100.xlsx', index=False)

本次爬虫板块的代码如下  还有保存到数据库的就不讲解了 详细的话看我之前的文章
多页爬取的话 分析几页的url地址可得  多了个offset参数 每页间隔10 后续通过for循环遍历即可 

import requests
import parsel
import pandas as pd
import pymysql# 建立连接
connect = pymysql.connect(user='root',password="112233",host='localhost',database='douban', )
# 拿游标
cursor = connect.cursor()# 此模块集成了css  xpath re正则三种解析数据的模块
data = []
for page in range(0, 101, 10):url = f'https://www.maoyan.com/board/4?timeStamp=1741780786427&channelId=40011&index=2&signKey=30a132dd14a76c19cfd2759ba27adc28&sVersion=1&webdriver=false&offset={page}'headers = {'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36 Edg/134.0.0.0','referer':'https://www.maoyan.com/','cookie':'你的cookie'}resp = requests.get(url, headers=headers)selector = parsel.Selector(resp.text)lis = selector.css('.board-wrapper dd')for li in lis:movie_name = li.css('.name a::attr(title)').get()movie_actor = li.css('.star::text').get().strip().replace('主演:', '')movie_time = li.css('.releasetime::text').get().replace('上映时间:', '')movie_s = li.css('.score i::text').getall()[0]movie_ore = li.css('.score i::text').getall()[-1]movie_score = movie_s + movie_oredit = {'电影名': movie_name,'主演': movie_actor,'上映时间': movie_time,'评分': movie_score}data.append(dit)# pd.DataFrame(data).to_excel('Top100.xlsx', index=False)#     准备sql语句sql = 'insert into top100 values (%s,%s,%s,%s)'cursor.executemany(sql,[(movie_name,movie_actor,movie_time,movie_score)])# 提交事务connect.commit()

爬取的数据如下: 

 接着我们清洗数据  将excel文件中上映时间的字段 中的国家地名去掉  只保留纯日期数值
至于如何查看 数据的一些信息 语法就不在这里介绍了 可以看之前的文章

# 导包 读取文件
import pandas as pddf = pd.read_excel('Top100.xlsx', index_col=False)
# 将上映时间这一列的数据中的日期提取出来 重新赋值给上映时间这一列
df['上映时间'] = df['上映时间'].str.extract(r'(\d{4}-\d{2}-\d{2})')# 去除空数据
# 将数据中的空数据去除  在原有的数据上
df.dropna(inplace=True)# 将处理好的数据保存到新的文件中  不生成索引列
df.to_excel('new_Top.xlsx', index=False)

# 导包
from pyecharts.charts import Line
from pyecharts import options as opts# 生成柱状图
c = (Line()# 添加x轴 数据 将电影名这一列的数据转换成列表.add_xaxis(df['电影名'].tolist())# 添加y轴 设置y轴名称  同样将数据转换成列表.add_yaxis('评分', df['评分'].tolist())# 设置 配置项.set_global_opts(# 标题与副标题的设置title_opts=opts.TitleOpts(title="Top100电影评分", subtitle='副标题'),# x轴相关的设置  设置x轴的数据 向右旋转45 -45 为逆时针xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)))# 列的设置 不显示每一列上面的数据.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
)
# 生成html 文件
c.render('Top100.html')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/73886.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hadoop 启动,发现 namenode、secondary namenodes,这两个没有启动,报错超时。

今天在启动 hadoop 的时候,发现本应该同时启动的 namenode、secondary namenodes 却都没有启动。我还以为是坏了又重新装了虚拟机,重新下载 Hadoop 重新配置结果还是同样的问题,那没办法只能去解决问题了。 首先先再次尝试启动看他报错是什么…

Ranger 鉴权

Apache Ranger 是一个用来在 Hadoop 平台上进行监控,启用服务,以及全方位数据安全访问管理的安全框架。 使用 ranger 后,会通过在 Ranger 侧配置权限代替在 Doris 中执行 Grant 语句授权。 Ranger 的安装和配置见下文:安装和配置 …

Sqlserver安全篇之_启用和禁用Named Pipes的案列介绍

https://learn.microsoft.com/zh-cn/sql/tools/configuration-manager/named-pipes-properties?viewsql-server-ver16 https://learn.microsoft.com/zh-cn/sql/tools/configuration-manager/client-protocols-named-pipes-properties-protocol-tab?viewsql-server-ver16 默认…

2025年Postman的五大替代工具

虽然Postman是一个广泛使用的API测试工具,但许多用户在使用过程中会遇到各种限制和不便。因此,可能需要探索替代解决方案。本文介绍了10款强大的替代工具,它们能够有效替代Postman,成为你API测试工具箱的一部分。 什么是Postman&…

Redis之单线程与多线程

redis 单线程与多线程 Redis是单线程,主要是指Redis的网络IO和键值对读写是由一个线程来完成的,Redis在处理客户端的请求时包含获取(socket读)、解析、执行、内容返回(socket写)等都由一个顺序串行的主线程处理,这就是…

算法刷题力扣

先把大写的字母变成小写的&#xff0c;用大写字母32即可变为小写字母。 写循环跳过字符。 然后判断是否相等即可。具体代码如下&#xff1a; class Solution { public: bool isPalindrome(string s) { int sizes.size(); int begin0; int ends.size()-1; for(int i0;i<s…

allure下载安装及配置

这里写目录标题 一、JDK下载安装及配置二、allure下载三、allure安装四、allure环境变量配置五、allure验证是否安装成功 一、JDK下载安装及配置 allure 是一个java测试报告框架。所以要基于JDK环境。 JDK下载与安装及配置&#xff1a;https://blog.csdn.net/qq_24741027/arti…

linux之 内存管理(1)-armv8 内核启动页表建立过程

一、内核启动时&#xff0c;页表映射有哪些&#xff1f; Linux初始化过程&#xff0c;会依次建立如下页表映射&#xff1a; 1.恒等映射&#xff1a;页表基地址idmap_pg_dir; 2.粗粒度内核镜像映射&#xff1a;页表基地址init_pg_dir; 3.fixmap映射&#xff1a;页表基地址为…

【资料分享】全志科技T113-i全国产(1.2GHz双核A7 RISC-V)工业核心板规格书

核心板简介 创龙科技SOM-TLT113 是一款基于全志科技T113-i 双核ARM Cortex-A7 玄铁C906 RISC-V HiFi4 DSP 异构多核处理器设计的全国产工业核心板&#xff0c;ARM Cortex-A7 处理单元主频高达1.2GHz。核心板 CPU、ROM、RAM、电源、晶振等所有元器件均采用国产工业级方案&…

R语言高效数据处理-自定义格式EXCEL数据输出

注&#xff1a;以下代码均为实际数据处理中的笔记摘录&#xff0c;所以很零散&#xff0c; 将就看吧&#xff0c;这一篇只是代表着我还在&#xff0c;所以可能用处不大&#xff0c;这一段时间都很煎熬&#xff01; 在实际数据处理中为了提升效率&#xff0c;将Excel报表交付给…

SpringBoot-2整合MyBatis以及基本的使用方法

目录 1.引入依赖 2.数据库表的创建 3.数据源的配置 4.编写pojo类 5.编写controller类 6.编写接口 7.编写接口的实现类 8.编写mapper 1.引入依赖 在pom.xml引入依赖 <!-- mysql--><dependency><groupId>com.mysql</groupId><artifac…

[蓝桥杯 2023 省 B] 飞机降落(不会dfs的看过来)

[蓝桥杯 2023 省 B] 飞机降落 题目描述 N N N 架飞机准备降落到某个只有一条跑道的机场。其中第 i i i 架飞机在 T i T_{i} Ti​ 时刻到达机场上空&#xff0c;到达时它的剩余油料还可以继续盘旋 D i D_{i} Di​ 个单位时间&#xff0c;即它最早可以于 T i T_{i} Ti​ 时刻…

英伟达GTC 2025大会产品全景剖析与未来路线深度洞察分析

【完整版】3月19日&#xff0c;黄仁勋Nvidia GTC 2025 主题演讲&#xff5c;英伟达 英伟达GTC 2025大会产品全景剖析与未来路线深度洞察分析 一、引言 1.1 分析内容 本研究主要采用了文献研究法、数据分析以及专家观点引用相结合的方法。在文献研究方面&#xff0c;广泛收集了…

Prometheus使用

介绍&#xff1a;Prometheus 是一个开源的 监控与告警系统&#xff0c;主要用于采集和存储时间序列数据&#xff08;Time Series Data&#xff09; Prometheus的自定义查询语言PromQL Metric类型 为了能够帮助用户理解和区分这些不同监控指标之间的差异&#xff0c;Prometheu…

Zabbix监控自动化(Zabbix Mnitoring Automation)

​​​​​​zabbix监控自动化 1、自动化监控(网络发现与自动注册只能用其一) 1.1 ansible安装zabbix agent 新采购100台服务器&#xff1a; 1、安装操作系统 2、初始化操作系统 3、安装zabbix agent 1.手动部暑 2.脚本部暑(shell expect) 3.ansible 4、纳入监控 1.…

QtCreator16创建WebAssembly工程在浏览器中显示图片

显示效果&#xff1a; 实现过程&#xff1a; 添加qrc资源文件 输入文件名&#xff1a; 选择模板为Qt Resource File 在工程目录下创建res文件夹&#xff0c;复制图片文件到res中 编辑qrc文件 添加资源前缀 添加图片资源 选择图片资源添加别名 复制资源URL 使用别名调用资源 居…

openpnp - 如果安装面的钣金接触面不平,可以尝试加垫片

文章目录 openpnp - 如果安装面的钣金接触面不平&#xff0c;可以尝试加垫片概述吐槽备注END openpnp - 如果安装面的钣金接触面不平&#xff0c;可以尝试加垫片 概述 在X轴导轨上&#xff0c;架上百分表&#xff0c;打设备的工作平面的平面度&#xff0c;发现工作平面不平(和…

人工智能之数学基础:线性方程组

本文重点 线性方程组是由两个或两个以上的线性方程组成的方程组,其中每个方程都是关于两个或两个以上未知数的线性方程。 记忆恢复 我们先从小学学习的线性方程组找到感觉 解答过程: 将第二个方程乘以2,得到: 2x−2y=2 将第一个方程减去新得到的方程,消去x: (2x+y)−…

DeepSeek-R1思路训练多模态大模型-Vision-R1开源及实现方法思路

刚开始琢磨使用DeepSeek-R1风格训练多模态R1模型&#xff0c;就看到这个工作&#xff0c;本文一起看看&#xff0c;供参考。 先提出问题&#xff0c;仅靠 RL 是否足以激励 MLLM 的推理能力&#xff1f; 结论&#xff1a;不能&#xff0c;因为如果 RL 能有效激励推理能力&#…

鸿蒙NEXT项目实战-百得知识库04

代码仓地址&#xff0c;大家记得点个star IbestKnowTeach: 百得知识库基于鸿蒙NEXT稳定版实现的一款企业级开发项目案例。 本案例涉及到多个鸿蒙相关技术知识点&#xff1a; 1、布局 2、配置文件 3、组件的封装和使用 4、路由的使用 5、请求响应拦截器的封装 6、位置服务 7、三…