利用AFE+MCU构建电池管理系统(BMS)

前言

实际BMS项目中,可能会综合考虑成本、可拓展、通信交互等,用AFE(模拟前端)+MCU(微控制器)实现BMS(电池管理系统)。

希望看到这篇博客的朋友能指出错误或提供改进建议。

有纰漏请指出,转载请说明。

学习交流请发邮件 1280253714@qq.com


    单纯电池管理保护芯片构建的BMS

    以IP3264为例

    以英集芯的4~5 节锂离子/聚合物电池保护器IP3264为例,其具有如下功能。

    IP3264具有的功能

    这个电路为充放电同口电池管理保护电路

    在异常情况下,控制两个NMOS,起到保护作用

    通过采集每一节电芯电压,起到过充、过放、断线保护功能;

    通过外接NTC,检测电芯温度,起到低温、过温保护功能;

    通过采集Rsense压差,起到充放电过流保护功能;

    IP3264不具有的功能

    由于BMS架构已经被芯片定死了,IP3264后续的可拓展性比较差,无法像AFE+MCU架构那样根据具体需求进行灵活选择和优化。

    IP3264主要提供电池过充、过放、过流等基本保护功能,其数据处理和算法运行能力相对有限。

    IP3264无法支持复杂的电池管理算法和高级功能,如精确的SOC估算、SOH评估等。

    IP3264无法进行高效的数据处理和算法运行能力,使得BMS系统无法准确地监测电池状态、预测电池寿命并采取相应的保护措施。

    IP3265无法做到电芯均衡功能,监控和故障诊断能力相对有限,主要依赖于预设的保护阈值和延时设置。


    AFE+MCU构建电池管理系统的优势

    一、更高的灵活性和可扩展性

    • 组件选择多样性:设计师可以根据具体的应用场景、性能需求、成本预算等因素,从市场上众多不同型号、性能的AFE和MCU中选择最合适的组件进行搭配。这种灵活性使得BMS系统能够更精确地满足各种定制化需求。
    • 系统升级便捷性:随着电池技术的不断进步,BMS系统可能需要进行相应的升级以适应新的电池特性。采用AFE+MCU架构的BMS系统可以更容易地进行硬件和软件升级,以适应未来的电池技术和市场需求。

    二、优化系统性能并降低成本

    • 性能优化:通过精心挑选AFE和MCU组件,设计师可以构建出性能卓越的BMS系统。例如,选择高精度、低噪声的AFE可以确保电池参数的准确测量;选择高性能、低功耗的MCU可以提高数据处理速度和系统响应能力。
    • 成本降低:通过合理搭配组件和优化设计,AFE+MCU架构的BMS系统可以在保证性能的同时降低成本。例如,对于某些特定应用场景,可能无需采用最昂贵的电池管理保护芯片,而是可以通过选择合适的AFE和MCU来实现相同的功能并降低成本。

    三、数据处理和响应速度提升

    • 高效数据处理:AFE负责将电池的模拟信号转换为数字信号,并传输给MCU进行处理。MCU具有强大的数据处理能力,可以迅速对接收到的数据进行处理和分析,从而实现对电池状态的实时监测和精确控制。
    • 快速响应:由于MCU具有高速运算能力,因此当电池出现异常情况时,BMS系统可以迅速响应并采取相应的保护措施,如切断电池供电或发出警报,以确保电池组的安全运行。

    实际AFE+MCU项目

    AFE+MCU构建BMS的挑战

    由于AFE无法像电池管理保护芯片那样,做到电压、电流、温度的保护,所以只能靠MCU进行数据采集,通过软件进行异常保护。

    同时,数据采集在很大程度上,依赖MCU的ADC采集精度,所以数据采集的准确性也是一大挑战。

    另外,AFE+MCU架构,需要考虑到低功耗设计,MCU在静态下,需要做到100uA以内的静态功耗。

    电池均衡控制、放电电流多级保护,SOC、SOH算法全部依赖软件,所以需要一定的项目开发周期,软件测试也比较困难。


    DEMO原理图

    PT6105作为AFE

    这里我选用了华润微的PT6105作为AFE,其核心功能就三个:内置LDO、利用跟随器输出单节电芯电压供给MCU采集、MCU控制其进行电芯被动均衡。

    AFE外围

    总电芯电压采集

    温度检测

    TL431提供高精度基准电压

    按键唤醒、电量显示

    充电MOS控制

    放电电流检测

    电池ID识别、唤醒、单总线串口通信


    软件控制策略

    硬件特性
    *PT6105内置5V的LDO,给MCU及外围电路供电
    *用精度为0.5%的TL431作为MCU基准电压

    模拟量检测
    *MCU可检测电池包总压
    *MCU控制PT6105的VOUT输出单节电芯电压,从而监测每一节电芯电压
    *MCU可检测电池包温度
    *MCU可检测放电电流

    充电控制策略
    *MCU可控制MOS管来控制是否进行充电
    *休眠后O-CHG-CTRL为低电平,也就是只能特定的充电器才能对电池包进行充电

    唤醒策略
    *可通过按键唤醒
    *可通过充电器或者工具设备,ID、S脚提供的5V上拉进行唤醒

    低功耗策略
    *进入休眠后,O-GND为高电平,NTC、TL431回路不消耗电流
    *进入休眠后,O-AD-VBAT为低电平,总压检测回路不消耗电流
    *进入休眠后,O-LEDx为高电平
    *进入休眠后,O-AFE-EN为低电平,AFE进入休眠,减小模拟前端的功耗

    被动均衡策略
    *充放电时不可进行均衡
    *同一时刻只能均衡一节电芯电压
    *当充电器/工具拔出10S后,若无其他异常,最高节电芯电压比其他任何一节电压高0.1V,则进行均衡(例如4.25、4.15、4.14、4.13、4.12,最高电芯电压4.25,剩余电芯电压均值4.135),均衡到最高那一节电芯的电压小于其他节电芯电压均值/均衡超时,则均衡停止,进入休眠状态。
    *均衡电流由限流电阻控制,例如电压4.2V,限流电阻200Ω,则均衡电流为21mA

    SOC估算测量
    *采用OCV-SOC、安时积分法融合估算
    *在系统启动/更换电池/均衡完成时/充满电后/被唤醒时,此时电池一般为弛豫或静置状态,单纯通过OCV-SOC估算(线性插值法),获取SOC初始值,对于三元锂电池来说可行性较高
    *在放电时,采集放电电流,通过安时积分法,计算SOC

    温度保护
    *NTC悬空/短路
    *充电时,高温大于50℃置充电高温flag,低温低于-5℃置充电低温flag;温度低于45℃清除充电高温flag,温度高于0℃清除充电低温flag
    *放电时,高温大于75℃置放电高温flag,低温低于-20℃置放电低温flag;温度低于50℃清除放电高温flag,温度高于-10℃清除放电低温flag
    *温度在0-45℃清除所有温度异常flag

    充电过压保护策略
    *总压超过21V或单节最高电压超过4.25V时充电截止,总压低于20.5且所有电芯电压低于4.15V充电恢复

    放电保护策略
    *总压低于14V或单节最低电压低于2.6V时放电保护,总压高于15V且所有电芯电压高于2.8V放电恢复
    *对于2Ah电池包,放电电流大于2*10A且时间超过4S进入放电保护,放电电流大于2*20A且时间超过1S进入放电保护

    硬件故障
    *电芯最高与最低节压差超过1V时为电芯电压严重失衡,为故障状态;压差在0.5V以内恢复
    *当检测到电池总压低于5V,判定为保险丝烧坏/电压检测回路异常;总压高于10V恢复
    *当检测到任何一节电芯电压低于0.5V,为断线状态;所有电芯电压高于2V恢复
    *NTC悬空/短路为异常;温度在0-45℃恢复


    无情的AI生成结束语

    通过AFE(模拟前端)PT6105与MCU的紧密协作,我们成功实现了一个功能全面、性能卓越的电池管理系统(BMS)。该系统充分利用了PT6105的硬件特性,包括其内置的5V LDO为MCU及外围电路提供稳定供电,以及使用高精度TL431作为MCU的基准电压,确保了系统的高精度和低噪声性能。

    在模拟量检测方面,MCU能够准确检测电池包的总压、单节电芯电压、温度和放电电流,为电池状态的实时监测提供了可靠的数据支持。同时,充电控制策略、唤醒策略和低功耗策略的制定,进一步提升了系统的灵活性和能效。

    特别是在充电和放电过程中,系统采用了精细的控制策略,包括充电控制、休眠唤醒、低功耗管理以及被动均衡等,确保了电池的安全、稳定和高效运行。其中,被动均衡策略的实施,有效避免了电池组内部电芯之间的电压失衡,延长了电池的使用寿命。

    在SOC估算方面,系统采用了OCV-SOC和安时积分法相结合的估算方法,提高了SOC估算的准确性和可靠性。同时,温度保护、充电过压保护和放电保护策略的制定,为电池的安全使用提供了有力的保障。

    此外,系统还具备完善的硬件故障诊断功能,能够及时发现并处理电芯电压失衡、保险丝烧坏、电芯断线以及NTC异常等故障,确保了系统的稳定性和可靠性。

    综上所述,AFE+MCU实现的BMS系统具有高精度、高可靠性、高能效和低故障率等优点,为电动汽车、储能系统等领域提供了优质的电池管理解决方案。未来,我们将继续优化和完善该系统,以满足更多领域和场景的需求,推动电池管理技术的不断发展和进步。

    本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/71603.shtml

    如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

    相关文章

    基于SpringBoot的智慧家政服务平台系统设计与实现的设计与实现(源码+SQL脚本+LW+部署讲解等)

    专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

    什么是 Cloud Studio DeepSeek ; 怎么实现Open WebUI快速体验

    什么是 Cloud Studio DeepSeek ;怎么实现Open WebUI快速体验 一、概述 欢迎使用 Cloud Studio DeepSeek 工作空间!我们已为您预装并启动了以下服务,等待加载十几秒即可查看效果: Ollama 服务:支持通过 API 调用 DeepSeek 模型。 AnythingLLM 前端服务:提供交互式聊天界…

    【Python 语法】常用 Python 内置函数

    reversed() 反转reversed() 的语法反转字符串、列表、元组 sorted() 自定义排序sorted() 语法使用示例1. 基本排序:默认升序排列2. 基本排序:降序排列3. 自定义排序:使用 key 参数4. 自定义排序:按某种规则进行排序5. 排序字典&am…

    [网络] 如何开机自动配置静态IP,并自动启动程序

    背景: 需要固定ip地址,并且能够自动启动可执行文件。 流程: 1.在/etc/network/interfaces 中添加 auto eth0 iface eth0 inet staticaddress 192.168.1.100netmask 255.255.255.0gateway 192.168.1.1 2.将下面这行代码添加自动启动脚本 …

    打造智能聊天体验:前端集成 DeepSeek AI 助你快速上手

    DeepSeek AI 聊天助手集成指南 先看完整效果: PixPin_2025-02-19_09-15-59 效果图: 目录 项目概述功能特点环境准备项目结构组件详解 ChatContainerChatInputMessageBubbleTypeWriter 核心代码示例使用指南常见问题 项目概述 基于 Vue 3 TypeScrip…

    【C# 数据结构】队列 FIFO

    目录 队列的概念FIFO (First-In, First-Out)Queue<T> 的工作原理&#xff1a;示例&#xff1a;解释&#xff1a; 小结&#xff1a; 环形队列1. **FIFO&#xff1f;**2. **环形缓冲队列如何实现FIFO&#xff1f;**关键概念&#xff1a; 3. **环形缓冲队列的工作过程**假设…

    Mac 清理缓存,提高内存空间

    步骤 1.打开【访达】 2.菜单栏第五个功能【前往】&#xff0c;点击【个人】 3.【command shift J】显示所有文件&#xff0c;打开【资源库】 4.删除【Containers】和【Caches】文件 Containers 文件夹&#xff1a;用于存储每个应用程序的沙盒数据&#xff0c;确保应用程序…

    Hutool - DFA:基于 DFA 模型的多关键字查找

    一、简介 在文本处理中&#xff0c;常常需要在一段文本里查找多个关键字是否存在&#xff0c;例如敏感词过滤、关键词匹配等场景。Hutool - DFA 模块基于确定性有限自动机&#xff08;Deterministic Finite Automaton&#xff0c;DFA&#xff09;模型&#xff0c;为我们提供了…

    C++STL容器之map

    1.介绍 map是 C 标准模板库&#xff08;STL&#xff09;中的一个关联容器&#xff0c;用于存储键值对&#xff08;key-value pairs&#xff09;。map中的元素是按照键&#xff08;key&#xff09;进行排序的&#xff0c;并且每个键在容器中是唯一的。map通常基于红黑树&#xf…

    CentOS的ssh复制文件

    1.前提 首先要已经连接上了对方的ssh 2.命令 scp [文件] 目标IP:目标路径 例如&#xff1a; $PWD是一个环境变量&#xff0c;可以获取当前绝对目录&#xff0c;ssh上传的时候一定要确保对方有这个目录才行&#xff0c;不然会报错 3.递归上传 scp -r 目录 目标IP:路径 可以…

    《Python实战进阶》专栏 No.3:Django 项目结构解析与入门DEMO

    《Python实战进阶》专栏 第3集&#xff1a;Django 项目结构解析与入门DEMO 在本集中&#xff0c;我们将深入探讨 Django 的项目结构&#xff0c;并实际配置并运行一个入门DEMO博客网站&#xff0c;帮助你在 Web 开发中更高效地使用 Django。Django 是一个功能强大的 Python Web…

    每日一题——376. 摆动序列

    题目链接&#xff1a;376. 摆动序列 - 力扣&#xff08;LeetCode&#xff09; 代码&#xff1a; class Solution { public:int wiggleMaxLength(vector<int>& nums) {int curdiff 0;int prediff 0;int result 1; for(int i 0;i < nums.size()-1;i){curdiff …

    DeepSeek与ChatGPT:AI语言模型的全面技术解析与对比

    DeepSeek与ChatGPT:AI语言模型的全面技术解析与对比 一、诞生背景与技术演进路径 1.1 OpenAI与ChatGPT的生态布局 ChatGPT的研发主体OpenAI成立于2015年,早期定位为非营利性研究机构,核心目标为实现通用人工智能(AGI)。其技术路径以Transformer架构为基础,通过堆叠参数规…

    [原创](Modern C++)现代C++的关键性概念: 学习新算法: std::unique_copy

    [作者] 常用网名: 猪头三 出生日期: 1981.XX.XX 企鹅交流: 643439947 个人网站: 80x86汇编小站 编程生涯: 2001年~至今[共24年] 职业生涯: 22年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、Delphi、XCode、Eclipse…

    前端(vue)学习笔记(CLASS 1):vue框架入门

    1、vue上手 概念&#xff1a;vue是一个用于构建用户界面的渐进式框架 vue的两种使用方式&#xff1a; 1、vue的核心包开发 场景&#xff1a;局部模块改造 2、vue核心包&vue插件工程化开发 场景&#xff1a;整站开发 1、创建实例 核心步骤 1、准备容器&#xff08;…

    synchronized锁字符串

    示例一 在没有使用synchronized锁的情况下: import java.util.HashMap; import java.util.Map;public class NonSynchronizedSchoolExample {private static final Map<String, Integer> schoolCountMap new HashMap<>(); // 存储每个学校的交卷数量public sta…

    1.14作业

    1 if($x[scheme]http||$x[scheme]https){ $ip gethostbyname($x[host]); echo </br>.$ip.</br>; if(!filter_var($ip, FILTER_VALIDATE_IP, FILTER_FLAG_NO_PRIV_RANGE | FILTER_FLAG_NO_RES_RANGE)) {die(ip!); }echo file_get_contents($_POST[url]);可以DNS重…

    Hopper架构 GEMM教程

    一 使用 1.1 makefile compile:nvcc -arch=sm_90a -lcuda -lcublas -std=c++17 matmul_h100_optimal.cu -o testrun:./test加入-lcublas,不然会有函数无法被识别 二 代码分析 2.1 kernel外参数分析 2.1.1 基本参数 constexpr int BM = 64*2;constexpr int BN = 256;cons…

    DeepSeek模型快速部署教程-搭建自己的DeepSeek

    前言&#xff1a;在人工智能技术飞速发展的今天&#xff0c;深度学习模型已成为推动各行各业智能化转型的核心驱动力。DeepSeek 作为一款领先的 AI 模型&#xff0c;凭借其高效的性能和灵活的部署方式&#xff0c;受到了广泛关注。无论是自然语言处理、图像识别&#xff0c;还是…

    数据仓库、数据湖和数据湖仓

    数据仓库、数据湖和数据湖仓是三种常见的数据存储和管理技术&#xff0c;各自有不同的特点和适用场景。以下是它们的详细比较&#xff1a; 1. 数据仓库&#xff08;Data Warehouse&#xff09; 定义&#xff1a;用于存储结构化数据&#xff0c;经过清洗、转换和建模&#xff…