Mac 基于Ollama 本地部署DeepSeek离线模型

最近节日期间最火的除了《哪吒》就是deepseek了,毕竟又让西方各个层面都瑟瑟发抖的产品。DeepSeek凭借其强大的AI能力真的是在全球多个领域展现出强大的影响力。由于受到外部势力的恶意攻击倒是deepseek官方服务不稳定,国内其他厂家的适配版本也不是很稳定,所以在自己电脑部署一个本地离线模型就可以解决很大问题。本文我们介绍基于ollama的Mac Arm系统详细部署。

一、DeepSeek介绍

DeepSeek的应用现在全球下载榜单登顶,流量巨大。国内网都在讨论和使用,朋友圈充斥着各种关于deepseek的新闻,先一起来看看deepseek最近发生了什么:

  • 澳大利亚发布禁令:当地时间2025年2月4日,澳大利亚内政部长托尼·伯克签署“强制性指令”,以国家安全为由,禁止在政府系统和设备上使用DeepSeek产品、应用程序和网络服务,要求政府部门和机构尽快向内政部报告,确保DeepSeek不会残留在任何设备上,且禁止重新安装。
  • 美国相关法案及举措:美国国会提出《2025年美国人工智能能力与中国脱钩法案》,若通过,任何美国人使用DeepSeek等中国AI模型,个人最高面临20年监禁和100万美元罚款,企业罚款1亿美元并支付3倍赔偿金。美国德克萨斯州已率先禁止政府设备使用DeepSeek,NASA、国防部等联邦机构也紧急封杀相关产品。
    下面是各个厂商对deepseek模型的适配情况:
  • 百度智能云:2月3日,百度智能云千帆平台正式上架DeepSeek - R1和DeepSeek - V3模型,推出超低价格方案,用户可享受限时免费服务。
  • 阿里云:2月3日,阿里云PAI Model Gallery支持云上一键部署DeepSeek - V3、DeepSeek - R1,用户可零代码实现从训练到部署再到推理的全过程。
  • 华为云:2月1日,华为云与硅基流动团队联合首发并上线基于华为云昇腾云服务的DeepSeek R1/V3推理服务。
  • 腾讯云:2月2日,DeepSeek - R1大模型一键部署至腾讯云HAI上,开发者仅需3分钟即可接入调用。2月4日,腾讯云TI平台推出“开发者大礼包”,DeepSeek全系模型一键部署,部分模型限免体验。
  • 京东云:2月5日,京东云正式上线DeepSeek - R1和DeepSeek - V3模型,支持公有云在线部署、专混私有化实例部署两种模式。
  • 其他平台:360数字安全、云轴科技、天翼云等平台也先后宣布对DeepSeek模型的支持。
  • 英伟达:北京时间1月31日,英伟达宣布DeepSeek - R1模型登陆NVIDIA NIM,称DeepSeek - R1是最先进的大语言模型。
  • 亚马逊:1月31日,亚马逊宣布DeepSeek - R1模型已可以在Amazon Web Services上使用,其首席执行官安迪·贾西告诉用户“尽管用”。
  • 微软:1月31日,微软接入了DeepSeek - R1模型。

大过年的不放假只是为了这波流量吗?先看看这波流量有多香:
根据市场分析公司 Appfigures 数据 (不包括中国第三方应用商店),1 月 26 日,DeepSeek 首次登上苹果 App Store 下载量榜首,并一直保持全球领先地位,Sensor Tower 研究显示,1 月 28 日起,DeepSeek 在美国谷歌 Play Store 也位居榜首。自 1 月 20 日 DeepSeek - R1 模型正式发布后,其 APP 在短短 18 天内,全球下载量突破 1600 万次,成功登顶 140 个国家和地区的下载榜首,这一数字几乎是竞争对手 OpenAI 的 ChatGPT 在同期下载量的两倍。其中印度成为 DeepSeek 最大的用户来源国,自推出以来,印度用户下载量占所有平台下载总量的 15.6%。

从日活数据来看,根据国内 AI 产品榜统计,DeepSeek 应用上线 20 天,日活就突破了 2000 万,并且 DeepSeek 应用 (不包含网站数据) 上线 5 天日活就已超过 ChatGPT 上线同期日活,成为全球增速最快的 AI 应用 ,日活数量的快速增长,充分印证了 DeepSeek 对 C 端用户广泛的吸引力。

除了流量,我们在看看deepseek r1的真正实力:
在训练和推理成本方面:

  • 总体耗资低:DeepSeek R1 的训练仅耗资 550 万美元左右,而与之性能相似的 OpenAI 的模型,据传训练成本约为 5 亿美元。
  • 推理成本优势明显:DeepSeek R1 输入 Tokens 每 100 万个为 0.55 美元,输出 Tokens 每 100 万个为 2.19 美元。相比之下,OpenAI 的 O1 输入 Tokens 每 100 万个为 15 美元,输出 Tokens 每 100 万个为 60 美元。

此外deepseek还有以下特色能力:

  • 强大的推理能力
    • 支持长链推理:能够生成数万字的思维链,在处理复杂任务时,可显著提高推理准确性。
    • 自我验证与反思:通过强化学习训练,模型能够自主发展包括自我验证、反思等高级认知功能。
  • 多语言支持:基于混合专家架构(Mixture of Experts, MoE),可支持多种语言和技术领域,能对不同语言的问题生成相应语言的回答。
  • 高效部署与成本效益:运行成本仅为 OpenAI 的 3% 左右,还提供了 API 服务,降低了企业用户的使用门槛。
  • 创新训练策略
    • 多阶段渐进训练:训练过程分为预备阶段、冷启动微调、纯强化学习、数据合成与筛选、二次微调(SFT)以及后续强化学习优化等几个阶段,避免一次性训练的灾难性遗忘,逐步强化不同能力。
    • 混合奖励机制:结合任务结果验证与人类偏好,在强化学习阶段设计了准确性奖励、格式奖励等,还引入了模型基于奖励、语言一致性奖励等,平衡性能与安全性。
  • 海量参数与选择性激活
    • 海量参数:DeepSeek R1 共有 6710 亿个参数,由多个专家网络组成。
    • 选择性激活:每次只使用 6710 亿个参数中的 370 亿个,确保模型只使用任务所需的参数,优化计算效率。

二、Ollama介绍

Ollama 作为一款新兴的开源大型语言模型服务工具,在人工智能领域迅速崭露头角,为用户带来了全新的本地化模型部署体验。

功能概述

Ollama 本质上是一个致力于简化本地运行大语言模型流程的工具。它通过提供统一的接口和便捷的操作方式,让用户能够轻松地在自己的设备上部署和使用各种不同的大语言模型,而无需复杂的配置和专业的技术知识。其核心功能在于打破了模型部署的技术壁垒,使得更多人能够享受到本地化大语言模型的优势。

核心特点
  1. 本地部署:最显著的特点之一就是支持本地部署,用户无需依赖网络连接到外部服务器,所有的模型计算和数据处理都在本地设备上完成,这极大地保障了数据的隐私和安全性 ,不用担心数据泄露风险。
  2. 多系统支持:具备出色的兼容性,无论是 Mac、Linux 还是 Windows 操作系统,都能无缝适配。这意味着不同系统偏好的用户都能利用 Ollama 实现自己的模型部署需求。
  3. 多模型支持:Ollama 对多种流行的大语言模型提供支持,涵盖了 Llama、Falcon、Qwen2、Llama3、Phi3、Gemma2 等,当然也包括我们即将部署的 DeepSeek 模型。用户可以根据实际需求,一键切换不同的模型,灵活选择最适合自己任务的模型。
  4. 易用性:采用直观的命令行界面,操作流程简洁明了,即使是初次接触大语言模型部署的新手,也能快速上手,轻松完成模型的下载、部署和使用。
  5. 可扩展性:允许用户根据自身的硬件环境和具体的模型需求进行自定义配置,以达到最佳的性能表现。同时,还支持安装插件来拓展新的功能,满足不同用户的个性化需求。
  6. 开源免费:完全开源的特性,让用户能够自由地查看、修改和分发代码,不仅降低了使用成本,还促进了全球开发者社区的共同协作和创新。
  7. API 支持:提供简洁易用的 API,开发者可以通过该 API 轻松地创建、运行和管理大型语言模型实例,方便将模型集成到各种应用程序中,拓展了模型的应用场景。
  8. 预构建模型库:内置了一系列预先训练好的大型语言模型,用户无需从头开始训练模型,直接从预构建模型库中选择合适的模型,即可快速应用到自己的项目中,大大节省了时间和资源。
技术规格
  1. 模型规格:提供了多种不同参数量的模型选择,如 7b、14b、34b 等。一般来说,参数量越大的模型,其性能和处理复杂任务的能力越强,但同时对硬件的要求也更高。
  2. token 机制:在处理文本时,采用 token 机制。对于中文,大约 1 - 2 个字符对应一个 token;英文则约 4 个字符对应一个 token;而对于代码,会按照语法规则进行切分。
  3. 性能指标:在 CPU 模式下,处理速度大约为 5 - 20 tokens/s,内存占用相对较低,适合个人进行简单的测试和初步使用;在 GPU 模式下,处理速度能提升至 50 - 200+ tokens/s,内存占用较高,但性能强劲,更适用于对性能要求较高的生产环境。
  4. 系统要求:硬件方面,CPU 需要 4 核及以上,架构为 x86_64;内存最低要求 16GB,推荐 32GB 以上的 DDR4 及以上规格;存储最低需要 30GB,推荐 50GB 以上的 SSD。若使用 GPU,显存需 8GB 及以上,NVIDIA 显卡优先。软件方面,支持 macOS 12.0+、Linux(Ubuntu 20.04+)、Windows 10/11 操作系统。
部署指南
  1. macOS 安装:用户可直接访问 ollama 官网,在网站上找到专门为 Mac 设计的安装包下载链接,下载完成后,双击安装包,按照安装向导的提示,一步步点击 “继续”“同意” 等按钮,即可轻松完成安装。安装完成后,通过在终端输入ollama serve命令,启动服务。
  2. Linux 安装:可以采用快速安装方式,在终端执行命令curl -fsSL https://ollama.com/install.sh | sh;也可以使用 apt 安装(适用于 ubuntu/debian 系统),执行相应的 apt 安装命令,完成安装过程。
  3. Docker 安装:如果用户倾向于使用 Docker 进行部署,首先需要拉取镜像,命令为docker pull ollama/ollama,然后通过相关的容器运行命令,完成容器的运行和配置。

三、实战部署步骤

下载安装完成ollama后,在终端执行ollama --version验证是否安装正确,如果安装成功,命令行会显示 Ollama 的版本信息。可以通过ollama list查看已安装模型:
在这里插入图片描述

此前安装过llama3的本地模型,后面又安装了deepseek-r1:1.5b,体积比llama3小很多。

在huggingface搜索deepseek(https://huggingface.co/models?sort=trending&search=deepseek):
在这里插入图片描述

有很多deepseek的,选择一个GGUF格式的模型,GGUF格式是llama.cpp团队搞的一种模型存储格式,一个模型就是一个文件,方便下载。选择Use this model,然后点击Ollama,然后点击Copy就可以把拉取命令拷贝到剪切板上,通过以下命令就可以安装DeepSeek-V3:
在这里插入图片描述
在这里插入图片描述

copy后执行:ollama run hf.co/unsloth/DeepSeek-R1-GGUF:BF16

也可以在ollama中搜索deepseek(https://ollama.com/search):
在这里插入图片描述

在结果中选择对应的模型,显存容量不同,建议:

显存容量建议模型
小于等于 4GB 显存1.5b 模型
大于 4GB,且小于等于 12GB 显存7b 或 8b 模型
大于 12GB 显存14b 模型

个人电脑是MacBook Pro M3,选择了1.5b版本模型。

直接执行:

ollama run deepseek-r1:1.5b

安装成功后就可以在终端执行问答了。后续也可以执行ollama run deepseek-r1:1.5b重新进入交互窗口,实测交互速度还是可以的:
在这里插入图片描述

四、使用 Open WebUI 增强交互体验

在终端交互不是很方便,可以使用三方webui工具来提升交互效果,只要是支持Ollama的webUI都可以,如Dify,AnythingLLM都可以。这里使用Open WebUI工具,它应该是目前功能最全,最好用的大模型WebUI工具。

可以通过以下几种方式来安装:

  • 使用Docker-desktop,
  • 自行安装Python环境,使用Pip的方式安装即可
  • 直接使用浏览器Web UI插件就能搞定
  • 使用ChatBox、Cherry Studio等桌面客户端都可以

这里直接使用python环境安装,执行:

pip3 install open-webui

安装完成后执行:open-webui serve,启动后,在浏览器中访问 http://localhost:8080/ 即可进入 Open WebUI 界面。
在这里插入图片描述

五、总结

本文介绍了deepseek模型、ollama,以及Mac端离线部署步骤,最后介绍了Open WebUI 来增强交互体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70501.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

51单片机之引脚图(详解)

8051单片机引脚分类与功能笔记 1. 电源引脚 VCC(第40脚):接入5V电源,为单片机提供工作电压。GND(第20脚):接地端,确保电路的电位参考点。 2.时钟引脚 XTAL1(第19脚&a…

力扣刷题 题11,12

题目11 思路&#xff1a;设置左右指针 left和 right 指针指向数组的开始和末尾&#xff0c;max_water 用于记录最大容量初始为0。利用while循环left<right&#xff0c;移动指针比较数组元素 height[left] 和 height[right] 的大小&#xff0c;移动较短的那条线的指针&#x…

使用Python实现PDF与SVG相互转换

目录 使用工具 使用Python将SVG转换为PDF 使用Python将SVG添加到现有PDF中 使用Python将PDF转换为SVG 使用Python将PDF的特定页面转换为SVG SVG&#xff08;可缩放矢量图形&#xff09;和PDF&#xff08;便携式文档格式&#xff09;是两种常见且广泛使用的文件格式。SVG是…

爬虫工程师分享:获取京东商品详情SKU数据的技术难点与攻破方法

在电商数据领域&#xff0c;京东商品详情页的SKU数据是许多爬虫工程师的目标。这些数据包含了商品的价格、库存、规格等关键信息&#xff0c;对于市场分析、价格监控等应用场景至关重要。然而&#xff0c;获取这些数据并非易事&#xff0c;京东作为国内电商巨头&#xff0c;其反…

【DeepSeek × Postman】请求回复

新建一个集合 在 Postman 中创建一个测试集合 DeepSeek API Test&#xff0c;并创建一个关联的测试环境 DeepSeek API Env&#xff0c;同时定义两个变量 base_url 和 api_key 的步骤如下&#xff1a; 1. 创建测试集合 DeepSeek API Test 打开 Postman。点击左侧导航栏中的 Co…

使用java代码操作rabbitMQ收发消息

SpringAMQP 将来我们开发业务功能的时候&#xff0c;肯定不会在控制台收发消息&#xff0c;而是应该基于编程的方式。由于RabbitMQ采用了AMQP协议&#xff0c;因此它具备跨语言的特性。任何语言只要遵循AMQP协议收发消息&#xff0c;都可以与RabbitMQ交互。并且RabbitMQ官方也…

【WB 深度学习实验管理】使用 PyTorch Lightning 实现高效的图像分类实验跟踪

本文使用到的 Jupyter Notebook 可在GitHub仓库002文件夹找到&#xff0c;别忘了给仓库点个小心心~~~ https://github.com/LFF8888/FF-Studio-Resources 在机器学习项目中&#xff0c;实验跟踪和结果可视化是至关重要的环节。无论是调整超参数、优化模型架构&#xff0c;还是监…

【AIGC】冷启动数据与多阶段训练在 DeepSeek 中的作用

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;冷启动数据的作用冷启动数据设计 &#x1f4af;多阶段训练的作用阶段 1&#xff1a;冷启动微调阶段 2&#xff1a;推理导向强化学习&#xff08;RL&#xff0…

AWK系统学习指南:从文本处理到数据分析的终极武器 介绍

目录 一、AWK核心设计哲学解析 1.1 记录与字段的原子模型 1.2 模式-动作范式 二、AWK编程语言深度解析 2.1 控制结构 说明&#xff1a; 2.2 关联数组 代码说明&#xff1a; 示例输入和输出&#xff1a; 注意事项&#xff1a; 2.3 内置函数库 三、高级应用技巧 3.1…

链表和 list

一、单链表的模拟实现 1.实现方式 链表的实现方式分为动态实现和静态实现两种。 动态实现是通过 new 申请结点&#xff0c;然后通过 delete 释放结点的形式构造链表。这种实现方式最能体 现链表的特性&#xff1b; 静态实现是利用两个数组配合来模拟链表。一个表示数据域&am…

大模型推理——MLA实现方案

1.整体流程 先上一张图来整体理解下MLA的计算过程 2.实现代码 import math import torch import torch.nn as nn# rms归一化 class RMSNorm(nn.Module):""""""def __init__(self, hidden_size, eps1e-6):super().__init__()self.weight nn.Pa…

MySQL 8.0.41安装教程(2025年2月8号)

下载网址&#xff1a;https://www.mysql.com/cn/downloads/ 点击 我选择的是第二个离线安装 点击之后&#xff0c;选择直接下载&#xff1a; 下载完成双击&#xff1a; 我选择的是自定义安装&#xff1a; 右边默认已经存在我选择的8.0.41 点击红框中的&#xff0c;自定义安装路…

WPS中解除工作表密码保护(忘记密码)

1.下载vba插件 项目首页 - WPS中如何启用宏附wps.vba.exe下载说明分享:WPS中如何启用宏&#xff1a;附wps.vba.exe下载说明本文将详细介绍如何在WPS中启用宏功能&#xff0c;并提供wps.vba.exe文件的下载说明 - GitCode 并按照步骤安装 2.wps中点击搜索&#xff0c;输入开发…

Python多版本管理

关注后回复 python 获取相关资料 ubuntu18.04 # ubuntu18 默认版本 Python 2.7.17 apt install python python-dev python-pip# ubuntu18 默认版本 Python 3.6.9 apt install python3 python3-dev python3-pip# ubuntu18 使用 python3.8 apt install python3.8 python3.8-dev#…

基于python多线程多进程爬虫的maa作业站技能使用分析

基于python多线程多进程爬虫的maa作业站技能使用分析 技能使用分析 多线程&#xff08;8核&#xff09; import json import multiprocessing import requests from multiprocessing.dummy import Pooldef maa(st):url "https://prts.maa.plus/copilot/get/"m …

2025.2.8——一、[护网杯 2018]easy_tornado tornado模板注入

题目来源&#xff1a;BUUCTF [护网杯 2018]easy_tornado 目录 一、打开靶机&#xff0c;整理信息 二、解题思路 step 1&#xff1a;分析已知信息 step 2&#xff1a;目标——找到cookie_secret step 3&#xff1a;构造payload 三、小结 一、打开靶机&#xff0c;整理信…

深度学习里面的而优化函数 Adam,SGD,动量法,AdaGrad 等 | PyTorch 深度学习实战

前一篇文章&#xff0c;使用线性回归模型逼近目标模型 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课&#xff1a;引领人工智能新时代【梗直哥瞿炜】 深度学习里面的而优化函数 …

Chrome谷歌多开教程:实用方法与工具

不管是电子商务、技术测试、空投等不同专业领域&#xff0c;还是个人的工作和生活账号管理&#xff0c;使用不同的独立账户往往需要借助Chrome谷歌浏览器多开来提高效率。Chrome谷歌多开有哪些方法和工具&#xff1f;可以来参考以下实用内容。 一、Chrome谷歌多开方法与工具 1…

数据库操作与数据管理——Rust 与 SQLite 的集成

第六章&#xff1a;数据库操作与数据管理 第一节&#xff1a;Rust 与 SQLite 的集成 在本节中&#xff0c;我们将深入探讨如何在 Rust 中使用 SQLite 数据库&#xff0c;涵盖从基本的 CRUD 操作到事务处理、数据模型的构建、性能优化以及安全性考虑等方面。SQLite 是一个轻量…

【AI实践】Cursor上手-跑通Hello World和时间管理功能

背景 学习目的&#xff1a;熟悉Cursor使用环境&#xff0c;跑通基本开发链路。 本人背景&#xff1a;安卓开发不熟悉&#xff0c;了解科技软硬件常识 实践 基础操作 1&#xff0c;下载安装安卓Android Studio 创建一个empty project 工程&#xff0c;名称为helloworld 2&am…