【AIGC】冷启动数据与多阶段训练在 DeepSeek 中的作用


在这里插入图片描述

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳]
本文专栏: AIGC | ChatGPT

文章目录

  • 💯前言
  • 💯冷启动数据的作用
    • 冷启动数据设计
  • 💯多阶段训练的作用
    • 阶段 1:冷启动微调
    • 阶段 2:推理导向强化学习(RL)
    • 阶段 3:拒绝采样与监督微调(SFT)
    • 阶段 4:多场景强化学习
  • 💯代码示例:冷启动数据与多阶段训练的实现
    • 1. 冷启动微调阶段
      • 作用与应用:
    • 2. 推理导向的强化学习阶段
      • 作用与应用:
    • 3. 拒绝采样与监督微调阶段
      • 作用与应用:
    • 4. 多场景强化学习
      • 作用与应用:
    • 总体流程
      • DeepSeek 中的应用
  • 💯总结


在这里插入图片描述


💯前言

  • 在人工智能领域,深度学习模型的训练和优化往往需要大量的标注数据和计算资源。然而,面对复杂任务时,即使是最先进的技术和大量的训练数据也未必能够保证模型的最优表现。DeepSeek 在推理能力的提升上做出了突破,其中 冷启动数据 和 多阶段训练 是至关重要的组成部分。这些技术不仅提升了模型的推理效果,还确保了模型在各种复杂推理任务中具备了更高的准确度和稳定性。
    本文将深入探讨 冷启动数据 和 多阶段训练 在 DeepSeek 模型中的作用,并通过具体的例子和代码块,详细说明其在模型优化中的核心地位。
    DeepSeek API Docs​
    在这里插入图片描述

💯冷启动数据的作用

冷启动数据(cold-start data)是指在模型训练的初期阶段,利用少量手工设计的高质量数据来启动训练过程。这些数据并不依赖于大规模的标签数据,而是通过精心设计,提供对模型有指导性的推理信息,帮助模型在早期获得较好的表现。

在 DeepSeek 中,冷启动数据的引入主要解决了 DeepSeek-R1-Zero 模型在初期训练时遇到的可读性差、推理混乱等问题。DeepSeek-R1-Zero 使用强化学习(RL)直接从基础模型开始训练,而没有依赖传统的监督式微调(SFT)。然而,初期的 RL 模型由于缺乏有效的指导信息,往往会产生不符合用户需求的推理结果,比如推理链条不清晰、语言混合等问题。为了改善这一情况,DeepSeek-R1 引入了冷启动数据,这些数据帮助模型在最初阶段进行微调,使得其能够生成更加规范和易于理解的推理过程。

冷启动数据设计

在 DeepSeek 中,冷启动数据通常是通过以下几种方式收集和生成的:

  1. 少样本引导:利用少量的推理样本,生成详细的推理链条(Chain of Thought,CoT)。这些示例通常具有清晰的结构和推理过程,并且会被用于指导模型如何生成合适的推理步骤。

  2. 反思与验证提示:通过提示模型生成推理步骤,并要求其进行反思和验证。这样可以确保模型在推理过程中不断自我修正,提升推理的可靠性和准确度。

  3. 基于现有模型生成数据:从 DeepSeek-R1-Zero 的输出中筛选出高质量的推理链条,并通过人工后处理来增强其可读性和一致性。

通过这些方法,冷启动数据帮助模型在初期获得了更为规范的推理行为,从而为后续的多阶段训练打下了坚实的基础。


💯多阶段训练的作用

多阶段训练是 DeepSeek 中用于提升推理性能的核心技术之一。它通过分阶段逐步优化模型,解决了复杂任务中不同类型的推理能力瓶颈,并确保了模型能够在更为复杂和多样化的任务上获得更好的表现。

在 DeepSeek 的多阶段训练中,主要有以下几个阶段:

阶段 1:冷启动微调

在这一阶段,模型基于基础模型(如 DeepSeek-V3-Base)进行初步的微调。冷启动数据为这一阶段的训练提供了高质量的指导,确保模型可以生成清晰的推理链条。冷启动微调的目标是帮助模型快速获得有效的推理框架,使其在之后的训练中更加高效。

阶段 2:推理导向强化学习(RL)

此阶段的核心是 推理导向的强化学习(Reasoning-Oriented RL),即通过大规模的强化学习训练,进一步提升模型的推理能力。在这一阶段,模型通过执行多个推理任务,不断调整其推理策略,学习如何在不同的任务中进行有效推理。

为了让强化学习过程更加稳定和高效,DeepSeek 引入了 奖励建模 和 语言一致性奖励 等机制,帮助模型优化推理过程并减少语言混杂问题。奖励建模主要有两种类型:

  1. 准确度奖励:根据模型回答的正确性来进行奖励。例如,在数学问题中,模型需要提供准确的答案,才能获得奖励。

  2. 格式奖励:强制模型将思维过程置于 <think></think> 标签之间,以便清晰地展示推理链条。这种格式要求不仅提升了可读性,还帮助模型在推理过程中保持一致性。

阶段 3:拒绝采样与监督微调(SFT)

在这一阶段,经过强化学习训练的模型会通过 拒绝采样(Rejection Sampling) 方法,从 RL 训练中收集出符合要求的推理数据。拒绝采样通过对模型生成的推理进行评估,仅保留符合正确答案的推理链条,进一步优化模型的推理输出。

此后,模型会使用 监督微调(Supervised Fine-Tuning, SFT) 数据进行进一步的训练,特别是包括其他领域的知识,如写作、角色扮演等。这一阶段的目标是让模型不仅在推理任务中表现出色,还能在通用任务中展示出强大的能力。

阶段 4:多场景强化学习

最后,DeepSeek 引入了 多场景强化学习,该阶段的目标是进一步调整模型的推理能力,使其能够在不同的场景中更好地处理推理任务。同时,强化学习过程还会根据人类偏好进行优化,以提高模型在实际应用中的友好性和安全性。


💯代码示例:冷启动数据与多阶段训练的实现

以下是一个简单的代码示例,展示如何在模型训练中使用冷启动数据和多阶段训练。

# 假设已经有基础的模型 deepseek_v3_base 和冷启动数据 cold_start_data# 1. 冷启动微调阶段
def cold_start_finetuning(model, cold_start_data):# 使用冷启动数据微调模型model.train(cold_start_data)print("冷启动微调完成")return model# 2. 推理导向的强化学习阶段
def reasoning_oriented_rl(model, training_data, reward_function):# 采用强化学习算法训练模型for data in training_data:# 计算奖励reward = reward_function(model, data)# 更新模型model.update_with_reward(data, reward)print("推理导向的强化学习训练完成")return model# 3. 拒绝采样与监督微调阶段
def rejection_sampling(model, validation_data):# 进行拒绝采样,保留高质量的推理链条sampled_data = reject_bad_samples(model, validation_data)print(f"拒绝采样,保留 {len(sampled_data)} 条高质量数据")return sampled_datadef supervised_finetuning(model, sampled_data, sft_data):# 使用采样数据和SFT数据进一步微调模型model.train(sampled_data + sft_data)print("监督微调完成")return model# 4. 多场景强化学习
def multi_scenario_rl(model, scenarios):# 针对不同场景进行强化学习for scenario in scenarios:reward = evaluate_scenario(model, scenario)model.update_with_reward(scenario, reward)print("多场景强化学习完成")return model# 示例:训练 DeepSeek 模型
model = deepseek_v3_base
model = cold_start_finetuning(model, cold_start_data)
model = reasoning_oriented_rl(model, training_data, reward_function)
sampled_data = rejection_sampling(model, validation_data)
model = supervised_finetuning(model, sampled_data, sft_data)
model = multi_scenario_rl(model, scenarios)print("DeepSeek 模型训练完成")

1. 冷启动微调阶段

def cold_start_finetuning(model, cold_start_data):# 使用冷启动数据微调模型model.train(cold_start_data)print("冷启动微调完成")return model

作用与应用:

  • 冷启动数据是训练过程中的一类初步数据,它帮助模型在没有大量监督数据的情况下启动训练。通过利用精心设计的少量推理数据(如提供结构化的推理链条和反思过程),模型能够在训练初期就产生合理的推理输出。
  • 在 DeepSeek 中,冷启动微调 通过这种少量数据来解决模型初期可能出现的推理混乱和不稳定性问题。这个阶段非常关键,因为它帮助模型快速适应训练环境并生成规范化的推理步骤。

2. 推理导向的强化学习阶段

def reasoning_oriented_rl(model, training_data, reward_function):# 采用强化学习算法训练模型for data in training_data:# 计算奖励reward = reward_function(model, data)# 更新模型model.update_with_reward(data, reward)print("推理导向的强化学习训练完成")return model

作用与应用:

  • 这一阶段使用 强化学习(RL) 来优化模型在推理任务中的表现。通过 推理导向的强化学习,模型不仅学习如何给出答案,还学习如何生成合适的推理过程(即推理链条)。强化学习允许模型在解决复杂问题时能够不断调整和完善其推理策略。
  • 奖励机制(reward_function)在此发挥重要作用。每个训练步骤都基于模型的输出(例如,推理链条的正确性、格式等)来计算奖励,从而引导模型朝向正确的推理路径。
  • 在 DeepSeek 中,这个过程主要集中在数学推理、编程问题、科学推理等任务上,模型根据每个步骤的推理质量进行更新,从而提高其解题能力。

3. 拒绝采样与监督微调阶段

def rejection_sampling(model, validation_data):# 进行拒绝采样,保留高质量的推理链条sampled_data = reject_bad_samples(model, validation_data)print(f"拒绝采样,保留 {len(sampled_data)} 条高质量数据")return sampled_datadef supervised_finetuning(model, sampled_data, sft_data):# 使用采样数据和SFT数据进一步微调模型model.train(sampled_data + sft_data)print("监督微调完成")return model

作用与应用:

  • 拒绝采样(Rejection Sampling) 是一种筛选技术,用于从训练过程中收集高质量的推理数据。通过评估模型生成的输出,拒绝采样方法能够过滤掉低质量的推理链条,只保留那些符合标准的输出。这一过程确保了模型输出的推理链条不仅正确,而且可读性强。
  • 经过 拒绝采样 处理后的数据会被用于进一步的训练。监督微调(Supervised Fine-Tuning, SFT) 阶段结合了采样后的高质量数据和其他领域的知识(如写作、角色扮演等),进一步提升模型的综合能力。这个阶段旨在确保模型不仅在推理任务上表现出色,同时也能处理通用任务。

4. 多场景强化学习

def multi_scenario_rl(model, scenarios):# 针对不同场景进行强化学习for scenario in scenarios:reward = evaluate_scenario(model, scenario)model.update_with_reward(scenario, reward)print("多场景强化学习完成")return model

作用与应用:

  • 多场景强化学习 是为了增强模型在多个任务或场景中的表现而设计的。在 DeepSeek 中,模型需要处理各种推理任务(如数学问题、代码生成、科学推理等),这些任务可能具有不同的特征和要求。通过 多场景强化学习,模型能够在多个领域内进行学习,并根据不同场景的需求进行调整。
  • 在这一阶段,模型根据不同的任务和场景评估其输出,并通过强化学习进一步优化。每个场景的奖励计算和更新都会帮助模型适应新的场景或任务,提升其多样性和通用性。

总体流程

在这段代码的整体流程中,模型从初期的冷启动数据微调开始,逐步经过强化学习优化、拒绝采样与监督微调,最终通过多场景强化学习确保模型能够应对各种推理任务。这个过程的目标是让模型在特定任务上具备出色的推理能力,同时保持广泛的通用性。

DeepSeek 中的应用

在 DeepSeek 中,这一多阶段训练过程使得模型能够:

  • 快速适应初期训练,通过冷启动数据稳定训练过程;
  • 通过强化学习进一步优化推理链条,提升推理任务的准确性;
  • 通过拒绝采样与监督微调提高推理的质量和可读性,确保模型不仅能够给出正确答案,还能够清晰地解释其推理过程;
  • 通过多场景强化学习提升模型在多任务中的适应能力,实现更广泛的应用。

通过这样的多阶段训练,DeepSeek 能够在复杂任务中表现出色,不仅解决了推理问题,还能不断自我改进和进化,处理各种实际应用中的挑战。


💯总结

  • 在这里插入图片描述冷启动数据和多阶段训练是 DeepSeek 在推理任务中取得突破性进展的关键技术。冷启动数据通过提供高质量的引导信息,帮助模型在训练初期快速获得稳定的推理框架,而多阶段训练则确保了模型能够逐步提升其推理能力,处理更复杂的任务。通过这些技术,DeepSeek 不仅在推理任务上达到了前所未有的表现,也为未来人工智能推理模型的优化提供了新的思路和方法。

import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70487.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AWK系统学习指南:从文本处理到数据分析的终极武器 介绍

目录 一、AWK核心设计哲学解析 1.1 记录与字段的原子模型 1.2 模式-动作范式 二、AWK编程语言深度解析 2.1 控制结构 说明&#xff1a; 2.2 关联数组 代码说明&#xff1a; 示例输入和输出&#xff1a; 注意事项&#xff1a; 2.3 内置函数库 三、高级应用技巧 3.1…

链表和 list

一、单链表的模拟实现 1.实现方式 链表的实现方式分为动态实现和静态实现两种。 动态实现是通过 new 申请结点&#xff0c;然后通过 delete 释放结点的形式构造链表。这种实现方式最能体 现链表的特性&#xff1b; 静态实现是利用两个数组配合来模拟链表。一个表示数据域&am…

大模型推理——MLA实现方案

1.整体流程 先上一张图来整体理解下MLA的计算过程 2.实现代码 import math import torch import torch.nn as nn# rms归一化 class RMSNorm(nn.Module):""""""def __init__(self, hidden_size, eps1e-6):super().__init__()self.weight nn.Pa…

MySQL 8.0.41安装教程(2025年2月8号)

下载网址&#xff1a;https://www.mysql.com/cn/downloads/ 点击 我选择的是第二个离线安装 点击之后&#xff0c;选择直接下载&#xff1a; 下载完成双击&#xff1a; 我选择的是自定义安装&#xff1a; 右边默认已经存在我选择的8.0.41 点击红框中的&#xff0c;自定义安装路…

WPS中解除工作表密码保护(忘记密码)

1.下载vba插件 项目首页 - WPS中如何启用宏附wps.vba.exe下载说明分享:WPS中如何启用宏&#xff1a;附wps.vba.exe下载说明本文将详细介绍如何在WPS中启用宏功能&#xff0c;并提供wps.vba.exe文件的下载说明 - GitCode 并按照步骤安装 2.wps中点击搜索&#xff0c;输入开发…

Python多版本管理

关注后回复 python 获取相关资料 ubuntu18.04 # ubuntu18 默认版本 Python 2.7.17 apt install python python-dev python-pip# ubuntu18 默认版本 Python 3.6.9 apt install python3 python3-dev python3-pip# ubuntu18 使用 python3.8 apt install python3.8 python3.8-dev#…

基于python多线程多进程爬虫的maa作业站技能使用分析

基于python多线程多进程爬虫的maa作业站技能使用分析 技能使用分析 多线程&#xff08;8核&#xff09; import json import multiprocessing import requests from multiprocessing.dummy import Pooldef maa(st):url "https://prts.maa.plus/copilot/get/"m …

2025.2.8——一、[护网杯 2018]easy_tornado tornado模板注入

题目来源&#xff1a;BUUCTF [护网杯 2018]easy_tornado 目录 一、打开靶机&#xff0c;整理信息 二、解题思路 step 1&#xff1a;分析已知信息 step 2&#xff1a;目标——找到cookie_secret step 3&#xff1a;构造payload 三、小结 一、打开靶机&#xff0c;整理信…

深度学习里面的而优化函数 Adam,SGD,动量法,AdaGrad 等 | PyTorch 深度学习实战

前一篇文章&#xff0c;使用线性回归模型逼近目标模型 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课&#xff1a;引领人工智能新时代【梗直哥瞿炜】 深度学习里面的而优化函数 …

Chrome谷歌多开教程:实用方法与工具

不管是电子商务、技术测试、空投等不同专业领域&#xff0c;还是个人的工作和生活账号管理&#xff0c;使用不同的独立账户往往需要借助Chrome谷歌浏览器多开来提高效率。Chrome谷歌多开有哪些方法和工具&#xff1f;可以来参考以下实用内容。 一、Chrome谷歌多开方法与工具 1…

数据库操作与数据管理——Rust 与 SQLite 的集成

第六章&#xff1a;数据库操作与数据管理 第一节&#xff1a;Rust 与 SQLite 的集成 在本节中&#xff0c;我们将深入探讨如何在 Rust 中使用 SQLite 数据库&#xff0c;涵盖从基本的 CRUD 操作到事务处理、数据模型的构建、性能优化以及安全性考虑等方面。SQLite 是一个轻量…

【AI实践】Cursor上手-跑通Hello World和时间管理功能

背景 学习目的&#xff1a;熟悉Cursor使用环境&#xff0c;跑通基本开发链路。 本人背景&#xff1a;安卓开发不熟悉&#xff0c;了解科技软硬件常识 实践 基础操作 1&#xff0c;下载安装安卓Android Studio 创建一个empty project 工程&#xff0c;名称为helloworld 2&am…

深度解析DeepSeek模型系列:从轻量级到超大规模(附DeepSeek硬件配置清单)

在人工智能领域&#xff0c;深度学习模型的选择对于任务的执行效率和精度至关重要。DeepSeek模型系列提供了多种不同参数量的版本&#xff0c;以满足不同场景下的需求。本文将详细解析DeepSeek模型系列的特点、适用场景以及硬件需求。 DeepSeek模型系列概览 DeepSeek模型系列…

LabVIEW铅酸蓄电池测试系统

本文介绍了基于LabVIEW的通用飞机铅酸蓄电池测试系统的设计与实现。系统通过模块化设计&#xff0c;利用多点传感器采集与高效的数据处理技术&#xff0c;显著提高了蓄电池测试的准确性和效率。 ​ 项目背景 随着通用航空的快速发展&#xff0c;对飞机铅酸蓄电池的测试需求也…

JVM虚拟机以及跨平台原理

相信大家已经了解到Java具有跨平台的特性&#xff0c;即“一次编译&#xff0c;到处运行”&#xff0c;例如在Windows下编写的程序&#xff0c;无需任何修改就可以在Linux下运行&#xff0c;这是C和C很难做到的。 那么&#xff0c;跨平台是怎样实现的呢&#xff1f;这就要谈及…

基于STM32校车安全监控系统的设计(论文+源码+实物

1 方案设计 根据设计要求&#xff0c;本设计校车安全监控系统的设计以STM32F103单片机作为主控制器&#xff0c;通过MQ传感器实现异常气体的检测&#xff0c;当异常气体浓度异常时会通过继电器打开车窗进行通风&#xff0c;以保证舒适的环境&#xff0c;通过红外传感器用于监测…

Vite 打包原理

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

归一化与伪彩:LabVIEW图像处理的区别

在LabVIEW的图像处理领域&#xff0c;归一化&#xff08;Normalization&#xff09;和伪彩&#xff08;Pseudo-coloring&#xff09;是两个不同的概念&#xff0c;虽然它们都涉及图像像素值的调整&#xff0c;但目的和实现方式截然不同。归一化用于调整像素值的范围&#xff0c…

MySQL8.0实现MHA高可用

一、简介 MHA&#xff08;Master HA&#xff09;是一款开源的 MySQL 的高可用程序&#xff0c;它为 MySQL 主从复制架构提供了 automating master failover 功能。MHA 在监控到 master 节点故障时&#xff0c;会提升其中拥有最新数据的 slave 节点成为新的master 节点&#xf…

记录 | WPF基础学习登录界面制作

目录 前言一、普通方式Step1 创建项目Step2 设计布局Step3 对剩余布局进行内容填充可执行代码下载 Step4 编写点击事件Step5 创建新WPF窗口Step6 简单写点Index内容Step7 跳转到Index当前代码下载 二、绑定方式绑定用户名【单向绑定】双向绑定代码提供 三、MVVM方式1&#xff1…