单值二叉树(C语言详解版)

一、摘要

今天要讲的是leetcode单值二叉树,这里用到的C语言,主要提供的是思路,大家看了我的思路之后可以点击链接自己试一下。

二、题目简介

如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。

只有给定的树是单值二叉树时,才返回 true;否则返回 false

示例 1:

输入:[1,1,1,1,1,null,1]
输出:true

示例 2:

输入:[2,2,2,5,2]
输出:false

提示:

  1. 给定树的节点数范围是 [1, 100]
  2. 每个节点的值都是整数,范围为 [0, 99] 。

三、思路分析

思路一(递归)

当我们看到这道题目时,一个直观的想法是通过递归遍历二叉树来解决问题。在遍历过程中,我们需要将每个节点的值与根节点的值进行比对。如果所有节点的值都与根节点一致,那么返回 true;否则返回 false。这种方法与递归实现二叉树的前序、中序或后序遍历有一定的相似性。因此,我们需要注意二叉树的结构特性,确保在遍历过程中,左子树和右子树都被完整地访问到。这是解决这道题的一个常见思路。

接下来,我将通过代码来展示这个思路的实现。


代码实现

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/bool isUnivalTree(struct TreeNode* root) {// 如果当前节点为空,说明已经遍历到叶子节点的子节点,返回 trueif (root == NULL) {return true;}// 检查左子节点是否存在,且其值是否与当前节点的值不同if (root->left && root->left->val != root->val) {return false;}// 检查右子节点是否存在,且其值是否与当前节点的值不同if (root->right && root->right->val != root->val) {return false;}// 递归检查左子树和右子树return isUnivalTree(root->left) && isUnivalTree(root->right);
}

大家可以代入一个中途不相同值的二叉树,进行递归展开,这个递归比较简单很好理解。

 思路二(迭代)

递归方法虽然简洁,但在某些情况下可能会受到递归深度的限制(尤其是对于非常深的二叉树)。我们可以使用迭代法来避免递归的开销。

  1. 使用一个队列来存储待访问的节点。

  2. 从根节点开始,将根节点的值作为目标值。

  3. 遍历队列中的每个节点,检查其值是否与目标值一致。

  4. 如果发现任意一个节点的值与目标值不同,直接返回 false

  5. 如果所有节点都通过检查,最终返回 true

代码实现:

#include <stdbool.h>
#include <stdlib.h>/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/bool isUnivalTree(struct TreeNode* root) {if (root == NULL) return true;  // 空树是单值二叉树int target = root->val;  // 目标值为根节点的值struct TreeNode* queue[100];  // 队列,假设最多100个节点int front = 0, rear = 0;queue[rear++] = root;  // 将根节点加入队列while (front < rear) {struct TreeNode* node = queue[front++];  // 出队if (node->val != target) return false;  // 如果当前节点值与目标值不同,直接返回false// 将左右子节点加入队列(如果存在)if (node->left) queue[rear++] = node->left;if (node->right) queue[rear++] = node->right;}return true;  // 所有节点都通过检查,返回true
}

代码解释:

  1. 队列初始化

    • 使用一个数组 queue 作为队列,存储待访问的节点。

    • 使用两个指针 frontrear 分别表示队列的头部和尾部。

  2. 目标值

    • 将根节点的值作为目标值 target,所有节点的值都需要与它一致。

  3. 层次遍历

    • 从根节点开始,将其加入队列。

    • 每次从队列中取出一个节点,检查其值是否与目标值一致。

    • 如果一致,将其左右子节点(如果存在)加入队列。

    • 如果发现任意一个节点的值与目标值不同,直接返回 false

  4. 结束条件

    • 如果队列为空,说明所有节点都已检查完毕,返回 true

优点:

  • 避免递归:使用迭代法避免了递归的深度限制问题。

  • 逻辑清晰:层次遍历的逻辑直观,容易理解和实现。

  • 高效:时间复杂度为 O(n),其中 n 是树的节点数。

其实这道题思路和内容都挺简单的,这道题还可以通过全局变量记录目标值,或者DFS来实现,我们在日常学习过程中都可以通过一题多解的方法来锻炼代码思考能力。好啦今天的leetcode每日一题就到这里啦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69101.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【多表查询】

目录 一. 一对多二. 一对一 and 多对多三. 多表设计案例四. 多表查询4.1 概述4.2 内连接与外连接4.3 子查询4.4 案例 \quad 一. 一对多 \quad 删除外键 \quad 二. 一对一 and 多对多 \quad \quad 三. 多表设计案例 \quad 一个员工对应多个工作经历 \quad 四. 多表查询 \quad \q…

[Dialog屏幕开发] Table Control 列数据操作

阅读该篇文章之前&#xff0c;可先阅读下述资料 [Dialog屏幕开发] 屏幕绘制(Table Control控件)https://blog.csdn.net/Hudas/article/details/145314623?spm1001.2014.3001.5501https://blog.csdn.net/Hudas/article/details/145314623?spm1001.2014.3001.5501上篇文章我们…

Arduino大师练成手册 -- 读取DHT11

要在 Arduino 上控制 DHT11 温湿度传感器&#xff0c;你可以按照以下步骤进行&#xff1a; 硬件连接&#xff1a; 将 DHT11 的 VCC 引脚连接到 Arduino 的 5V 引脚。 将 DHT11 的 GND 引脚连接到 Arduino 的 GND 引脚。 将 DHT11 的 DATA 引脚连接到 Arduino 的数字引脚&am…

leetcode刷题记录(八十九)——35. 搜索插入位置

&#xff08;一&#xff09;问题描述 35. 搜索插入位置 - 力扣&#xff08;LeetCode&#xff09;35. 搜索插入位置 - 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位…

渐变颜色怎么调?

渐变颜色的调整是设计中非常重要的一部分&#xff0c;尤其是在创建具有视觉吸引力和深度感的设计作品时。以下是一些在不同设计软件中调整渐变颜色的详细步骤和技巧&#xff1a; 一、Adobe Photoshop 1. 创建渐变 打开渐变工具&#xff1a; 选择工具栏中的“渐变工具”&#x…

安装wxFormBuilder

1. 网址&#xff1a;GitHub - wxFormBuilder/wxFormBuilder: A wxWidgets GUI Builder 2. 安装MSYS2 MSYS2可以在GitHub的内容中找到&#xff0c;这个版本是32位64位的 3. 在程序中打开MINGW64 shell 4. 在MSYS2 MINGW64 shell中输入 pacman -Syu pacman -S ${MINGW_PACKAGE…

在 Windows 系统上,将 Ubuntu 从 C 盘 迁移到 D 盘

在 Windows 系统上&#xff0c;如果你使用的是 WSL&#xff08;Windows Subsystem for Linux&#xff09;并安装了 Ubuntu&#xff0c;你可以将 Ubuntu 从 C 盘 迁移到 D 盘。迁移过程涉及导出当前的 Ubuntu 发行版&#xff0c;然后将其导入到 D 盘的目标目录。以下是详细的步骤…

【知识】可视化理解git中的cherry-pick、merge、rebase

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 这三个确实非常像&#xff0c;以至于对于初学者来说比较难理解。 总结对比 先给出对比&#xff1a; 特性git mergegit rebasegit cherry-pick功能合并…

DBO优化最近邻分类预测matlab

蜣螂优化算法&#xff08;Dung Beetle Optimizer&#xff0c;简称 DBO&#xff09;作为一种新兴的群智能优化算法&#xff0c;于 2022 年末被提出&#xff0c;其灵感主要来源于蜣螂的滚球、跳舞、觅食、偷窃以及繁殖等行为。 本次使用的数据为 Excel 格式的分类数据集。该数据…

vulnhub靶场【kioptrix-3】靶机

前言 靶机&#xff1a;kioptrix-3&#xff0c;IP地址为192.168.1.74 攻击&#xff1a;kali&#xff0c;IP地址为192.168.1.16 都采用虚拟机&#xff0c;网卡为桥接模式 文章中涉及的靶机&#xff0c;来源于vulnhub官网&#xff0c;想要下载&#xff0c;可自行访问官网下载&a…

高并发处理 --- 超卖问题+一人一单解决方案

在高并发场景下&#xff0c;超卖和一人一单是两个典型的并发问题。为了解决这两个问题&#xff0c;我们可以使用乐观锁&#xff08;CAS&#xff09;和悲观锁&#xff0c;这两者分别有不同的实现方式和适用场景。下面我们详细介绍如何通过 乐观锁&#xff08;CAS&#xff09; 和…

C++ 标准模板库 (STL, Standard Template Library)

声明&#xff1a;大佬们~这是Tubishu在追寻stl过程中偶然得到了“颢天”大佬的笔记&#xff0c;shushu感觉非常有帮助&#x1f525;又颢天佬未曾来过CSDN&#xff0c;索性在此传达颢天大佬的功德&#x1f9ce; 传送门在此➡️颢天笔记✨✨ C 标准模板库 (STL, Standard Templa…

iOS 集成ffmpeg

前言 本来打算用flutter去实现一个ffmpeg的项目的&#xff0c;不过仔细分析了一下&#xff0c;我后期需要集成OpenGL ES做视频渲染处理&#xff0c;OpenGL ES的使用目前在flutter上面还不是很成熟&#xff0c;所以最后还是选择用原生来开发 ffmpeg集成到iOS工程 iOS对于ffmp…

代码随想录算法【Day31】

Day31 56. 合并区间 class Solution { public://按照左边界&#xff0c;从小到大排序static bool cmp(const vector<int>& a, const vector<int>& b){return a[0] < b[0];} ​vector<vector<int>> merge(vector<vector<int>>…

2013年蓝桥杯第四届CC++大学B组真题及代码

目录 1A&#xff1a;高斯日记&#xff08;日期计算&#xff09; 2B&#xff1a;马虎的算式&#xff08;暴力模拟&#xff09; 3C&#xff1a;第39级台阶&#xff08;dfs或dp&#xff09; 4D&#xff1a;黄金连分数&#xff08;递推大数运算&#xff09; 5E&#xff1a;前缀…

Windows电脑安装USB Redirector并实现内外网跨网USB共享通信访问

文章目录 前言1. 安装下载软件1.1 内网安装使用USB Redirector1.2 下载安装cpolar内网穿透 2. 完成USB Redirector服务端和客户端映射连接3. 设置固定的公网地址 前言 我们每天都在与各种智能设备打交道&#xff0c;从手机到电脑&#xff0c;再到各种外设&#xff0c;它们已经…

蓝桥杯3519 填充 | 分类讨论

题目传送门 很简单&#xff0c;遍历一次字符串&#xff0c;将‘?’作为0或1处理&#xff0c;发现00和11统计次数即可。 s str(input()) cnt 0 arr [00, 11, 0?, ?0, 1?, ?1, ??] i0 while i < len(s)-1:if s[i:(i2)] in arr:i 2cnt 1else:i 1 print(cnt)END✨

9.中断系统、EXTI外部中断

中断系统原理 中断 中断系统是管理和执行中断的逻辑结构&#xff0c;外部中断是众多能产生中断的外设之一&#xff0c;所以本节我们就借助外部中断来学习一下中断系统。在以后学习其它外设的时候&#xff0c;也是会经常和中断打交道的。 中断&#xff1a;在主程序运行过程中…

在Docker 容器中安装 Oracle 19c

在 Docker 容器中安装 Oracle 19c 是可行的&#xff0c;但它相较于其他数据库&#xff08;如 MySQL、PostgreSQL 等&#xff09;会复杂一些&#xff0c;因为 Oracle 数据库有一些特定的要求&#xff0c;如操作系统和库的依赖&#xff0c;以及许可证问题。 不过&#xff0c;Ora…

c++----------------------多态

1.多态 1.1多态的概念 多态(polymorphism)的概念&#xff1a;通俗来说&#xff0c;就是多种形态。多态分为编译时多态(静态多态)和运⾏时多 态(动态多态)&#xff0c;这⾥我们重点讲运⾏时多态&#xff0c;编译时多态(静态多态)和运⾏时多态(动态多态)。编译时 多态(静态多态)…