论文阅读的附录(七):Understanding Diffusion Models: A Unified Perspective(二):公式46的推导

Understanding Diffusion Models: A Unified Perspective(二):公式46的推导

文章概括

引用:

@article{luo2022understanding,title={Understanding diffusion models: A unified perspective},author={Luo, Calvin},journal={arXiv preprint arXiv:2208.11970},year={2022}
}
Luo, C., 2022. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970.

原文: https://arxiv.org/abs/2208.11970
代码、数据和视频:https://arxiv.org/abs/2208.11970


文章解析原文:
论文笔记(六十三)Understanding Diffusion Models: A Unified Perspective(二)


要推导的公式

目标是推导公式:
q ( x t ∣ x t − 1 , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) q ( x t − 1 ∣ x 0 ) . (46) q(x_t|x_{t-1}, x_0) = \frac{q(x_{t-1}|x_t, x_0) q(x_t|x_0)}{q(x_{t-1}|x_0)}. \tag{46} q(xtxt1,x0)=q(xt1x0)q(xt1xt,x0)q(xtx0).(46)


1. 条件概率的定义

条件概率的基本定义为:
q ( A ∣ B ) = q ( A ∩ B ) q ( B ) , 其中  q ( B ) > 0. q(A|B) = \frac{q(A \cap B)}{q(B)}, \quad \text{其中 } q(B) > 0. q(AB)=q(B)q(AB),其中 q(B)>0.
对于多个条件的情况,比如 ( q(A|B, C) ),可以扩展为:
q ( A ∣ B , C ) = q ( A , B , C ) q ( B , C ) . q(A|B, C) = \frac{q(A, B, C)}{q(B, C)}. q(AB,C)=q(B,C)q(A,B,C).

在我们的目标公式中, q ( x t ∣ x t − 1 , x 0 ) q(x_t|x_{t-1}, x_0) q(xtxt1,x0) 表示在 x t − 1 x_{t-1} xt1 x 0 x_0 x0 已知的条件下, x t x_t xt 的分布。因此:
q ( x t ∣ x t − 1 , x 0 ) = q ( x t , x t − 1 , x 0 ) q ( x t − 1 , x 0 ) . (1) q(x_t|x_{t-1}, x_0) = \frac{q(x_t, x_{t-1}, x_0)}{q(x_{t-1}, x_0)}. \tag{1} q(xtxt1,x0)=q(xt1,x0)q(xt,xt1,x0).(1)


2. 联合分布的分解

我们需要分解联合分布 q ( x t , x t − 1 , x 0 ) q(x_t, x_{t-1}, x_0) q(xt,xt1,x0)。以下是基础逻辑:

2.1 联合分布的定义

联合分布 q ( x t , x t − 1 , x 0 ) q(x_t, x_{t-1}, x_0) q(xt,xt1,x0) 表示 x t , x t − 1 , x 0 x_t, x_{t-1}, x_0 xt,xt1,x0 同时发生的概率。根据 概率链式法则(Chain Rule of Probability),联合分布可以逐步分解为条件概率的乘积:
q ( x t , x t − 1 , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) . (2) q(x_t, x_{t-1}, x_0) = q(x_{t-1}|x_t, x_0) q(x_t|x_0). \tag{2} q(xt,xt1,x0)=q(xt1xt,x0)q(xtx0).(2)

这一步基于条件概率的定义:

  • q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t, x_0) q(xt1xt,x0):在 x t x_t xt x 0 x_0 x0 已知的条件下, x t − 1 x_{t-1} xt1 的分布。
  • q ( x t ∣ x 0 ) q(x_t|x_0) q(xtx0):在 x 0 x_0 x0 已知的情况下, x t x_t xt 的边际分布。

2.2 为什么可以这样分解?

根据概率论的链式规则:
q ( A , B , C ) = q ( A ∣ B , C ) q ( B , C ) . q(A, B, C) = q(A|B, C) q(B, C). q(A,B,C)=q(AB,C)q(B,C).
在这里,设 A = x t − 1 A = x_{t-1} A=xt1 B = x t B = x_t B=xt C = x 0 C = x_0 C=x0,我们可以写成:
q ( x t − 1 , x t , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t , x 0 ) . q(x_{t-1}, x_t, x_0) = q(x_{t-1}|x_t, x_0) q(x_t, x_0). q(xt1,xt,x0)=q(xt1xt,x0)q(xt,x0).

接着,再对 q ( x t , x 0 ) q(x_t, x_0) q(xt,x0) 应用链式规则:
q ( x t , x 0 ) = q ( x t ∣ x 0 ) q ( x 0 ) . q(x_t, x_0) = q(x_t|x_0) q(x_0). q(xt,x0)=q(xtx0)q(x0).

因此:
q ( x t − 1 , x t , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) q ( x 0 ) . q(x_{t-1}, x_t, x_0) = q(x_{t-1}|x_t, x_0) q(x_t|x_0) q(x_0). q(xt1,xt,x0)=q(xt1xt,x0)q(xtx0)q(x0).

在本问题中, q ( x 0 ) q(x_0) q(x0) 是常量,不影响条件概率的形式,所以我们可以简化为:
q ( x t , x t − 1 , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) . q(x_t, x_{t-1}, x_0) = q(x_{t-1}|x_t, x_0) q(x_t|x_0). q(xt,xt1,x0)=q(xt1xt,x0)q(xtx0).

2.3 具体意义

  • 分解的直观意义:假设我们已经知道 x t x_t xt 和全局变量 x 0 x_0 x0 的值,那么我们可以首先用 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t, x_0) q(xt1xt,x0) 表示 x t − 1 x_{t-1} xt1 的条件概率,再用 q ( x t ∣ x 0 ) q(x_t|x_0) q(xtx0) 表示 x t x_t xt 的边际分布。

  • 为什么分解成这两项?

    • 这是因为 q ( x t ∣ x 0 ) q(x_t|x_0) q(xtx0) 表示的是全局信息(全局分布)。
    • q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t, x_0) q(xt1xt,x0) 捕捉的是局部的条件关系。

3. 分母的分解:边际化规则

分母 q ( x t − 1 , x 0 ) q(x_{t-1}, x_0) q(xt1,x0) x t − 1 x_{t-1} xt1 x 0 x_0 x0 的联合分布,可以通过边际化 x t x_t xt 得到:
q ( x t − 1 , x 0 ) = ∫ q ( x t , x t − 1 , x 0 ) d x t . (4) q(x_{t-1}, x_0) = \int q(x_t, x_{t-1}, x_0) dx_t. \tag{4} q(xt1,x0)=q(xt,xt1,x0)dxt.(4)

将公式 (2) 中的分解 q ( x t , x t − 1 , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) q(x_t, x_{t-1}, x_0) = q(x_{t-1}|x_t, x_0) q(x_t|x_0) q(xt,xt1,x0)=q(xt1xt,x0)q(xtx0) 代入公式 (4):
q ( x t − 1 , x 0 ) = ∫ q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) d x t . (5) q(x_{t-1}, x_0) = \int q(x_{t-1}|x_t, x_0) q(x_t|x_0) dx_t. \tag{5} q(xt1,x0)=q(xt1xt,x0)q(xtx0)dxt.(5)


4. 最终公式的推导

将公式 (5) 的分母代入公式 (3),得到:
q ( x t ∣ x t − 1 , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) ∫ q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) d x t . q(x_t|x_{t-1}, x_0) = \frac{q(x_{t-1}|x_t, x_0) q(x_t|x_0)}{\int q(x_{t-1}|x_t, x_0) q(x_t|x_0) dx_t}. q(xtxt1,x0)=q(xt1xt,x0)q(xtx0)dxtq(xt1xt,x0)q(xtx0).

现在,我们需要注意的是:

  1. 分子部分完全匹配公式 (46)。
  2. 分母部分的归一化形式也与公式 (46) 一致。

为了便于理解,分母中的积分项 ∫ q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) d x t \int q(x_{t-1}|x_t, x_0) q(x_t|x_0) dx_t q(xt1xt,x0)q(xtx0)dxt 在公式 (46) 中直接用 q ( x t − 1 ∣ x 0 ) q(x_{t-1}|x_0) q(xt1x0) 表示。


5. 为什么分母可以表示为 q ( x t − 1 ∣ x 0 ) q(x_{t-1}|x_0) q(xt1x0)

通过边际化定义:
q ( x t − 1 ∣ x 0 ) = ∫ q ( x t − 1 , x t ∣ x 0 ) d x t . q(x_{t-1}|x_0) = \int q(x_{t-1}, x_t|x_0) dx_t. q(xt1x0)=q(xt1,xtx0)dxt.

进一步分解 q ( x t − 1 , x t ∣ x 0 ) q(x_{t-1}, x_t|x_0) q(xt1,xtx0)
q ( x t − 1 , x t ∣ x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) . q(x_{t-1}, x_t|x_0) = q(x_{t-1}|x_t, x_0) q(x_t|x_0). q(xt1,xtx0)=q(xt1xt,x0)q(xtx0).

1. 条件概率的链式规则

根据条件概率的定义,联合概率 q ( A , B ∣ C ) q(A, B|C) q(A,BC) 可以分解为: q ( A , B ∣ C ) = q ( A ∣ B , C ) q ( B ∣ C ) . q(A, B|C) = q(A|B, C) q(B|C). q(A,BC)=q(AB,C)q(BC).


符号解释:

  • q ( A , B ∣ C ) q(A, B|C) q(A,BC):表示在 C C C 已知的条件下,事件 A A A B B B 同时发生的概率。
  • q ( A ∣ B , C ) q(A|B, C) q(AB,C):表示在 B B B C C C 已知的条件下,事件 A A A 的条件概率。
  • q ( B ∣ C ) q(B|C) q(BC):表示在 C C C 已知的条件下,事件 B B B 的条件概率。

代入后得到:
q ( x t − 1 ∣ x 0 ) = ∫ q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) d x t . q(x_{t-1}|x_0) = \int q(x_{t-1}|x_t, x_0) q(x_t|x_0) dx_t. q(xt1x0)=q(xt1xt,x0)q(xtx0)dxt.

因此,分母 q ( x t − 1 ∣ x 0 ) q(x_{t-1}|x_0) q(xt1x0) 确实是公式 (46) 中的形式。


6. 公式 (46) 的最终形式

结合以上推导,公式 (46) 的最终形式是:
q ( x t ∣ x t − 1 , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) q ( x t − 1 ∣ x 0 ) . q(x_t|x_{t-1}, x_0) = \frac{q(x_{t-1}|x_t, x_0) q(x_t|x_0)}{q(x_{t-1}|x_0)}. q(xtxt1,x0)=q(xt1x0)q(xt1xt,x0)q(xtx0).


7. 逐步推导总结

  1. 从条件概率的定义出发
    q ( x t ∣ x t − 1 , x 0 ) = q ( x t , x t − 1 , x 0 ) q ( x t − 1 , x 0 ) . q(x_t|x_{t-1}, x_0) = \frac{q(x_t, x_{t-1}, x_0)}{q(x_{t-1}, x_0)}. q(xtxt1,x0)=q(xt1,x0)q(xt,xt1,x0).

  2. 联合分布的分解
    q ( x t , x t − 1 , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) . q(x_t, x_{t-1}, x_0) = q(x_{t-1}|x_t, x_0) q(x_t|x_0). q(xt,xt1,x0)=q(xt1xt,x0)q(xtx0).

  3. 分母的边际化
    q ( x t − 1 , x 0 ) = ∫ q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) d x t . q(x_{t-1}, x_0) = \int q(x_{t-1}|x_t, x_0) q(x_t|x_0) dx_t. q(xt1,x0)=q(xt1xt,x0)q(xtx0)dxt.

  4. 最终公式的组合
    q ( x t ∣ x t − 1 , x 0 ) = q ( x t − 1 ∣ x t , x 0 ) q ( x t ∣ x 0 ) q ( x t − 1 ∣ x 0 ) . q(x_t|x_{t-1}, x_0) = \frac{q(x_{t-1}|x_t, x_0) q(x_t|x_0)}{q(x_{t-1}|x_0)}. q(xtxt1,x0)=q(xt1x0)q(xt1xt,x0)q(xtx0).


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69036.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Airflow:解码Airflow执行日期

执行日期是Apache Airflow(用于编排复杂数据管道的开源平台)的关键概念。掌握执行日期的概念及其对工作流的影响对于构建高效、可靠和可维护的数据管道至关重要。在本实用指南中,我们将深入研究执行日期在气流中的作用,它们的目的…

探究 Facebook 隐私安全发展方向,未来走向何方?

随着社交媒体的普及,隐私和数据安全问题成为了全球关注的焦点。Facebook,作为全球最大的社交平台之一,其隐私安全问题尤其引人注目。近年来,随着用户数据泄露事件的不断发生,Facebook 不断调整其隐私政策,探…

ray.rllib 入门实践-2:配置算法

前言: ray.rllib的算法配置方式有多种,网上的不同教程各不相同,有的互不兼容,本文汇总罗列了多种算法配置方式,给出推荐,并在最后给出可运行代码。 四种配置方式 方法1 import os from ray.rllib.algori…

Kaggle入门

title: Kaggle入门 tags: Kaggle abbrlink: 26966 date: 2023-08-19 22:23:36 Kaggle 入门 什么是 Kaggle? Kaggle是一个进行数据挖掘和预测竞赛的在线平台。 从公司的角度,可以提供一些数据,进而提出一个实际需要解决的问题。 从参赛者…

css-设置元素的溢出行为为可见overflow: visible;

1.前言 overflow 属性用于设置当元素的内容溢出其框时如何处理。 2. overflow overflow 属性的一些常见值: 1 visible:默认值。内容不会被剪裁,会溢出元素的框。 2 hidden:内容会被剪裁,不会显示溢出的部分。 3 sc…

状态模式——C++实现

目录 1. 状态模式简介 2. 代码示例 3. 单例状态对象 4. 状态模式与策略模式的辨析 1. 状态模式简介 状态模式是一种行为型模式。 状态模式的定义:状态模式允许对象在内部状态改变时改变它的行为,对象看起来好像修改了它的类。 通俗的说就是一个对象…

Word 中实现方框内点击自动打 √ ☑

注: 本文为 “Word 中方框内点击打 √ ☑ / 打 ☒” 相关文章合辑。 对第一篇增加了打叉部分,第二篇为第一篇中方法 5 “控件” 实现的详解。 在 Word 方框内打 √ 的 6 种技巧 2020-03-09 12:38 使用 Word 制作一些调查表、检查表等,通常…

利用 Three.js 实现 3D 粒子正方体效果

在这篇文章中,我将向大家展示如何使用 Three.js 创建一个带有粒子的 3D 正方体效果。通过这段代码,我们将能够在浏览器中渲染一个 3D 正方体形状,并且该正方体内部填充了大量粒子(可视化效果)。你可以通过鼠标控制视角…

DRF开发避坑指南01

在当今快速发展的Web开发领域,Django REST Framework(DRF)以其强大的功能和灵活性成为了众多开发者的首选。然而,错误的使用方法不仅会导致项目进度延误,还可能影响性能和安全性。本文将从我个人本身遇到的相关坑来给大…

ES设置证书和创建用户,kibana连接es

1、启动好es 2、进入es容器 docker exec -it es /bin/bash 3、生成ca证书 ./bin/elasticsearch-certutil ca 注:两个红方框位置直接回车 4、生成cert证书 ./bin/elasticsearch-certutil cert --ca elastic-stack-ca.p12 注:前两个红框直接回车&am…

一位前端小白的2024总结

目录 简要 一、迷茫点的解决 (1)前端领域该怎么学? (2)旧技术还需要学吗? (3)我该学些什么? 二、折磨点的解决 (1)学技术成果回报太慢怎么…

数据分析学习路线

阶段 1:数学与统计基础 1.1 数学基础 数据分析涉及大量的数学知识,尤其是统计学。虽然你不需要成为数学专家,但一些基本的数学概念对你理解数据分析非常重要。 线性代数: 矩阵运算:理解矩阵乘法、求逆等操作。特征值…

python爬虫 爬取站长素材 (图片)(自学6)

安装 :lxml 地址 : Installing lxml pip install lxml 或者 sudo pip install lxml 下面开始 写代码 下载 站长素材的图片 import urllib.requestfrom lxml import etreeimport osdef create_request(page):if(page 1):url "https://sc.chinaz.…

《OpenCV》——图像透视转换

图像透视转换简介 在 OpenCV 里,图像透视转换属于重要的几何变换,也被叫做投影变换。下面从原理、实现步骤、相关函数和应用场景几个方面为你详细介绍。 原理 实现步骤 选取对应点:要在源图像和目标图像上分别找出至少四个对应的点。这些对…

spring---@Pointcut表达式

spring语法 execution 方法表达式:execution(modifiers-pattern? ret-type-pattern declaring-type-pattern/name-pattern(param-pattern) throws-pattern?) 修饰符匹配(modifier-pattern?):可以省略。代表匹配任意修饰符方法;或者显示…

第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组

第十五届的题目在规定时间内做出了前5道,还有2道找时间再磨一磨。现在把做的一些思路总结如下: 题1:握手问题 问题描述 小蓝组织了一场算法交流会议,总共有 50人参加了本次会议。在会议上,大家进行了握手交流。按照惯例…

Linux - 五种常见I/O模型

I/O操作 (输入/输出操作, Input/Output) 是指计算机与外部设备就行数据交互的过程. 什么是外部设备: 如键盘, 鼠标, 硬盘, 网卡等. 五种常见的 I/O 模型: 阻塞 I/O非阻塞 I/O信号驱动 I/OI/O 多路复用异步 I/O 阻塞 I/O 阻塞 I/O 的特点: 当用户发起 I/O 请求后, 进程/线程就…

问题修复记录:Linux docker 部署 dify,无法调用宿主机本地服务

重磅推荐专栏: 《大模型AIGC》 《课程大纲》 《知识星球》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经…

【UE5插件】RuntimeSpeechRecognizer

作用:语音识别 获取途径: Runtime Audio Importer | Fab 示例蓝图: 如何使用插件 |Georgy 开发文档 UE5.3 RuntimeSpeechRecognizer Streaming Example posted by gtreshchev | blueprintUE | PasteBin For Unreal Engine RuntimeSpeechReco…

2025年最新深度学习环境搭建:Win11+ cuDNN + CUDA + Pytorch +深度学习环境配置保姆级教程

本文目录 一、查看驱动版本1.1 查看显卡驱动1.2 显卡驱动和CUDA对应版本1.3 Pytorch和Python对应的版本1.4 Pytorch和CUDA对应的版本 二、安装CUDA三、安装cuDANN四、安装pytorch五、验证是否安装成功 一、查看驱动版本 1.1 查看显卡驱动 输入命令nvidia-smi可以查看对应的驱…