力扣:64. 最小路径和

64. 最小路径和

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200
class Solution {public int minPathSum(int[][] grid) {int m = grid.length;int n = grid[0].length;if(m==1){int sum = 0;for(int i = 0;i < n;i++){sum += grid[0][i];//排除行为1的情况}return sum;}if(n==1){int sum = 0;for(int i = 0;i < m;i++){sum += grid[i][0];//排除列为1的情况}return sum;}int[][] dp = new int[m][n];dp[0][0] = grid[0][0];for(int i = 1;i < m;i++){dp[i][0] = dp[i-1][0] + grid[i][0]; //初始化第一列的dp数组}for(int i = 1; i < n;i++){dp[0][i] = dp[0][i-1] + grid[0][i]; //初始化第一行的dp数组}for(int i = 1;i < m;i++){for(int j = 1;j < n;j++){dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1]) + grid[i][j];//由左方和上方推导}}return dp[m-1][n-1];//输出右下角的和}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/6854.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】解决不同场景字符串问题:巧妙运用字符串函数

&#x1f308;个人主页&#xff1a;是店小二呀 &#x1f308;C语言笔记专栏&#xff1a;C语言笔记 &#x1f308;C笔记专栏&#xff1a; C笔记 &#x1f308;喜欢的诗句:无人扶我青云志 我自踏雪至山巅 文章目录 一、字符函数1.1 字符分类函数1.1.1 islower1.1.2 isupper 1.…

手动管理MySQL 8.0中的Undo表空间

MySQL 8.0为数据库管理员提供了更多的灵活性&#xff0c;特别是在管理Undo表空间方面。这项功能对于优化数据库性能、管理磁盘空间及确保数据恢复过程的高效性非常重要。本文详细介绍了如何在MySQL 8.0中手动管理Undo表空间&#xff0c;包括创建、配置、使用和维护这些表空间的…

JavaScript正则表达式

JavaScript正则表达式 创建正则表达式 使用构造函数 var 变量 new RegExp("正则表达式"); // 注意&#xff0c;参数是字符串var 变量 new RegExp("正则表达式", "匹配模式"); // 注意&#xff0c;两个参数都是字符串RegExp的意思是 Regular …

哪个品牌的骨传导耳机好用?精选五大高性能热门骨传导耳机款式推荐!

我作为一名热衷于音乐的数码博主&#xff0c;在选购产品前也习惯于先浏览各种榜单。最近&#xff0c;我发现关于骨传导耳机的讨论热度极高&#xff0c;有人认为骨传导耳机是非常值得入手的新型蓝牙耳机&#xff0c;也有人认为骨传导耳机只是智商税的产品。经过深入调查后&#…

jetbra.zip教程 激活JetBrains全家桶Idea、pyCharm…亲测有效

本教程基于Windows系统 1、下载jetbra.zip 1.1、地址&#xff1a;https://3.jetbra.in/ 1.2、点击随便一个可用站点 1.3、找到左上角蓝色部分&#xff0c;点击下载 1.4、注意软件卡片上右上角支持的版本 1.5、不要关闭网页&#xff0c;留着&#xff0c;要等会用到 2、下载对应…

器件配置比特流或 PDI 设置-7 系列比特流设置

7 系列比特流设置 下表所示 7 系列器件的器件配置设置可搭配 set_property <Setting> <Value> [current_design] Vivado 工具 Tcl 命令一起使用。 注释 &#xff1a; BPI 的比特流设置对于 Spartan -7 器件无效。

自定义数据上的YOLOv9分割训练

原文地址&#xff1a;yolov9-segmentation-training-on-custom-data 2024 年 4 月 16 日 在飞速发展的计算机视觉领域&#xff0c;物体分割在从图像中提取有意义的信息方面起着举足轻重的作用。在众多分割算法中&#xff0c;YOLOv9 是一种稳健且适应性强的解决方案&#xff0…

TinyML之micro_speech语音识别----Feature generation failed解决方案

具体的开发过程网上都有&#xff0c;就不赘述了。 在colab上训练模型&#xff0c;花了将近2小时&#xff0c;得到模型文件后&#xff0c;CV到micro_speech工程里的micro_features_model.cpp里&#xff0c;结果运行报错&#xff1a; Feature generation failed Requested feat…

c++ BSTree二叉搜索树(附原码)

目录 一、概念 二、基本操作 1、插入 2、中序遍历 3、删除 4、查找 5、总结删除 三、应用场景 四、原码 一、概念 左子树比根小&#xff0c;右子树比根大 意义&#xff1a;最多查找高度次数 不需要排序&#xff0c;就达到了二分查找的效率 同时还弥补了单纯数组的插入…

自适应调节Q和R的自适应UKF(AUKF_QR)的MATLAB程序

简述 基于三维模型的UKF&#xff0c;设计一段时间的输入状态误差较大&#xff0c;此时通过对比预测的状态值与观测值的残差&#xff0c;在相应的情况下自适应调节系统协方差Q和观测协方差R&#xff0c;构成自适应无迹卡尔曼滤波&#xff08;AUKF&#xff09;&#xff0c;与传统…

【分布式 | 第五篇】何为分布式?分布式锁?和微服务关系?

文章目录 5.何为分布式&#xff1f;分布式锁&#xff1f;和微服务关系&#xff1f;5.1何为分布式&#xff1f;5.1.1定义5.1.2例子5.1.3优缺点&#xff08;1&#xff09;优点&#xff08;2&#xff09;缺点 5.2何为分布式锁&#xff1f;5.2.1定义5.2.2必要性 5.3区分分布式和微服…

TinyVue 3.15.0 正式发布,推出全新的 Charts 图表组件底座,功能更强、图表更丰富!

你好&#xff0c;我是 Kagol。 我们非常高兴地宣布&#xff0c;2024年4月8日&#xff0c;TinyVue 发布了 v3.15.0 &#x1f389;。 TinyVue 每次大版本发布&#xff0c;都会给大家带来一些实用的新特性&#xff0c;上一个版本我们推出了业界组件库没有的 MindMap 思维导图组件…

zookeeper启动 FAILED TO START

注意&#xff1a;启动zookeeper时&#xff0c;需要使用zkServer.sh start命令将所有主机启动后&#xff0c;再查看状态 如果&#xff0c;启动一台主机&#xff0c;查看当前主机状态&#xff0c;则会报错 如果出错&#xff0c;进入到$ZOOKEEPER_HOME/logs&#xff0c;查看日志 …

LabVIEW智能变电站监控系统设计与实现

LabVIEW智能变电站监控系统设计与实现 随着电力系统和智能化技术的快速发展&#xff0c;建立一个高效、可靠的变电站监控系统显得尤为重要。通过分析变电站监控系统的需求&#xff0c;设计了一个基于LabVIEW软件的监控平台。该平台利用虚拟仪器技术、传感器技术和无线传输技术…

Nginx rewrite项目练习

Nginx rewrite练习 1、访问ip/xcz&#xff0c;返回400状态码&#xff0c;要求用rewrite匹配/xcz a、访问/xcz返回400 b、访问/hello时正常访问xcz.html页面server {listen 192.168.99.137:80;server_name 192.168.99.137;charset utf-8;root /var/www/html;location / {root …

【论文阅读:Towards Efficient Data Valuation Based on the Shapley Value】

基于Shapley值的高校数据价值评估 主要贡献 提出了一系列用于近似计算Shapley值的高效算法。设计了一个算法&#xff0c;通过实现不同模型评估之间的适当信息共享来实现这一目标,该算法具有可证明的误差保证来近似N个数据点的SV&#xff0c;其模型评估数量为 O ( N l o g ( N…

EPICS DataBase详解

1、分布式EPICS设置 1&#xff09; 操作界面&#xff1a;包括shell命令行方式(caget, caput, camonitor等)和图形界面方式(medm, edm, css等)。 2&#xff09;输入输出控制器(IOC) 2、IOC 1) 数据库&#xff1a;数据流&#xff0c;基本上周期运行 2)sequencer&#xff1a;基…

2024年全国保密宣传教育月的主题是()。A.贯彻落实保密法。你我都是护密人B.国家利益高于一切,保密责任重于泰山C.筑牢保密防线,维护国家安全

2024年全国保密宣传教育月的主题是()。点击查看答案 A.贯彻落实保密法。你我都是护密人B.国家利益高于一切&#xff0c;保密责任重于泰山 C.筑牢保密防线&#xff0c;维护国家安全D.共筑保密防线&#xff0c;公民人人有责 坚持不懈开展保密宣传教育&#xff0c;是保密工作实…

插入法(直接/二分/希尔)

//稳定耗时&#xff1a; 双向冒泡&#xff0c;可指定最大最小值个数MaxMinNum<nsizeof(Arr)/sizeof(Arr[0]), void BiBubbleSort(int Arr[],int n&#xff0c;int MaxMinNum){int left0,rightn-1;int i;bool notDone true;int temp;int minPos;while(left<right&&am…

图像处理--空域滤波增强(原理)

一、均值滤波 线性滤波算法&#xff0c;采用的主要是邻域平均法。基本思想是使用几个像素灰度的某种平均值来代替一个原来像素的灰度值。可以新建一个MN的窗口以为中心&#xff0c;这个窗口S就是的邻域。假设新的新的像素灰度值为&#xff0c;则计算公式为 1.1 简单平均法 就是…